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Two techniques are proposed for improving the accuracy of localization estimation in indoor visible light com-
munication systems, namely, averaging and Kalman filtering with averaging schemes. In the averaging technique,
the receiver position is estimated using the received signal strength (RSS) indication method multiple times (e.g.,
N samples), and the acquired estimations are averaged over all samples. To further improve the localization, the
Kalman filtering algorithm is adopted to estimate the received power over N samples, followed by applying the
RSS technique on the average received power. The proposed techniques are analyzed mathematically, considering
the effects of both line-of-sight (LOS) and first-reflection from non-LOS propagations. The performance of the
proposed techniques is determined by evaluating the positioning errors in a typical room. The results are compared
to that of the traditional RSS system. Simulation results reveal that an improvement of about 33.3% in the average
positioning error is achievable when using the averaging scheme as compared to that of the traditional RSS scheme.
This improvement increases to 72.2% when adopting the proposed Kalman filtering scheme. © 2020 Optical

Society of America

https://doi.org/10.1364/JOSAB.395056

1. INTRODUCTION

Visible light communication (VLC) systems will lead to an
immense revolution in communications techniques in the next
few years [1]. Indeed, they will provide high data transmis-
sion rates along with illumination for indoor environments.
In addition, they have a high potential for indoor localization
compared to RF techniques. Specifically, RF techniques suffer
from high interference problems and lack positioning accuracy
and coverage [2,3].

Traditional methods of implementing VLC positioning
include the time of arrival (TOA) technique, based on the abso-
lute arrival time of optical signals [4], angle of arrival (AOA)
technique, based on the intersection of several pairs of angle
direction lines [5–7], time difference of arrival (TDOA) tech-
nique, based on the difference between the arrival times between
signals from at least three transmitters [8], and received signal
strength (RSS) technique, based on measuring the attenuation
of optical signal strengths emitted by at least three transmitters
[5–7,9]. To achieve more accurate localization, a novel solution
that provides accurate and high-speed indoor navigation via
the designs of an elaborate flicker-free line coding scheme and
a lightweight image processing algorithm appears in Ref. [10].

A fusion positioning system based on an extended Kalman
filter (KF) is demonstrated in Refs. [11,12]. The KF can fuse
inertial navigation and visible light positioning data in order to
solve the problem of system failure and decreased accuracy. In
Ref. [13], the authors study the tracking of a VLC user when the
availability of the VLC access point (AP) link changes over the
user’s route.

In this paper, we aim at improving the accuracy of localiza-
tion estimation in indoor VLC systems by proposing two new
techniques, namely, averaging and Kalman filtering schemes. In
the averaging technique, the receiver position is estimated using
the RSS indication method multiple times (e.g., N samples),
and the acquired estimations are averaged over all samples.
For further improving the localization, the Kalman filtering
algorithm is adopted to estimate the received power over N
samples, followed by applying the RSS technique on the average
received power. Tracking mobile users with a KF can increase
the accuracy of the positioning, but the generic KF does not
consider instant changes in the measurement method. In order
to include this information in the position estimation, we imple-
ment an adaptive KF by modifying the filter parameters based
on the availability of APs to the user. The proposed techniques
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are analyzed mathematically, considering the effects of both
line-of-sight (LOS) and first-reflection from non-LOS (NLOS)
propagations. The performance of the proposed techniques
is determined by evaluating the positioning errors in a typical
room. The results are compared to those of the traditional RSS
system.

The remainder of this paper is organized as follows. Section 2
presents the channel modeling of a VLC system. Section 3
demonstrates the methodology of localization using the pro-
posed averaging technique. The KF technique and its algorithm
are explained in Section 4. Simulation results and discussion are
presented in Section 5. Finally, concluding remarks are given in
Section 6.

2. INDOOR VLC LINK MODEL

Figure 1 shows the indoor optical wireless channel model for
both LOS and NLOS propagations. We assume that we have
four ceiling light-emitting diode (LED) transmitters, located
at TX ,i = (xi , y i , zi ), i ∈ {1, 2, 3, 4}, and one photodetector,
located at RX = (x0, y0, z0).

A. LOS Link

The gain of the LOS optical link from the i th LED,
i ∈ {1, 2, 3, 4}, to the photodetector can be modeled as [14]

H i
LOS =

m + 1

2πd2
i

cosm(φi )AR cos(ψi )Ts (ψi )g (ψi ), (1)

where m is the Lambertian order, di is the distance between
transmitter i and the receiver,φi is the irradiance angle,ψi is the
incidence angle, Ts (·) and g (·) are the gains of the optical filter
and concentrator at the receiver (assumed here as unity gain),
respectively, and AR is the detector effective area.

B. NLOS Link

For a one-path indoor NLOS channel with the reflection
point located at p = (x , y , z), as shown in Fig. 1, the gain of
first-reflection H i p

NLOS from transmitter i is given by [14]

Fig. 1. LOS/NLOS channel model for indoor applications.

H i p
NLOS =

m + 1

2πD2
i p,1 D2

p,2
cosm(φi p) cos(αi p) · d A p

× ρ cos(βp) cos(ψp)Ts (ψp)g (ψp)AR , (2)

where Di p,1 is the distance between transmitter i and reflection
point p , Dp,2 is the distance between reflection point p and
receiver RX , φi p andψp are the NLOS irradiance and incidence
angles with respect to point p , respectively, αi p and βp are
the incidence and irradiance angles at the reflection point on
the wall, respectively, ρ is the wall reflectivity (assumed to be
ρ = 0.8), and d A p represents the area of the reflection point on
the wall.

The total NLOS channel gain for i th transmitter H i
NLOS is

given by collecting the reflections from the four walls [15]:

H i
NLOS =

4∑
j=1

H i
NLOS,wall j , (3)

where H i
NLOS,wall j is the collection of reflections from transmit-

ter i to wall j , and can be obtained by integrating Eq. (2) over
(x , z) or (y , z)based on the wall location, such that

H i
NLOS,wall j =

∫∫
(x ,z) or (y ,z)

m + 1

2πD2
i p,1 D2

p,2
cosm(φi p) cos(αi p)ρ

× cos(βp) cos(ψp)Ts (ψp)g (ψp)AR dA p .
(4)

1. Parameters’ Relations

The parameters of Eq. (4) can be determined as follows:

Di p,1 =

√
(TX ,i − p)(TX ,i − p)T ,

Dp,2 =

√
(p − RX )(p − RX )

T , (5)

where a T is the transpose operator for row vector a . From Fig. 1
and by using triangle calculations, the angles φi p , αi p , ψp , and
βp can be found as follows:

cos(φi p)=
|zi − z|

Di p,1
, αi p =

π

2
− φi p ,

cos(ψp)=
|z− z0|

Dp,2
, βp =

π

2
−ψp . (6)

3. PROPOSED LOCALIZATION METHODOLOGY
USING AN AVERAGING RSS TECHNIQUE

To get the receiver location, the traditional trilateration locali-
zation technique is employed using the RSS from three LED
transmitters having the maximum received levels [16]. Our
approach here is to average the estimated receiver position over a
certain number of measurements in order to reduce the localiza-
tion error. This reduction in error comes at the cost of increasing
the system’s mathematical complexity. Figure 2 shows a simple
block diagram that demonstrates this approach.
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Fig. 2. Block diagram of proposed averaging positioning scheme.

A. Received Signal Strength Technique

Using Eq. (1), the received LOS power from transmitter
i ∈ {1, 2, 3, 4} can be written as

PR,i =

(
m + 1

2πd2
i

cosm+1(φi )AR

)
PT,i , (7)

where PT,i is the transmitted power of i th LED. Here, we
assume thatψi = φi , which is determined from Fig. 1 as

cos(φi )=
V
di
, (8)

where V is the vertical distance between the transmitter and
receiver, assumed constant. Accordingly, the distance between
transmitter i and the receiver can be evaluated as

di =
m+3

√
(m + 1)V m+1 AR PT,i

2π PR,i
. (9)

If we consider the effect of NLOS as well, the total power col-
lected at the receiver is obtained by modifying Eq. (7) to

PR,i = (H i
LOS + H i

NLOS)PT,i . (10)

B. Linear Least-Square Method

To estimate the receiver location, the linear least-square (LLS)
estimation is commonly used. Let (xi , y i ), i ∈ {1, 2, 3}, be
the horizontal coordinates of transmitter i and dL,i be the hori-
zontal distance of the receiver from transmitter i . The range
equation can be written in the form

(x̂ − xi )
2
+ ( ŷ − y i )

2
= d2

L,i , i ∈ {1, 2, 3}, (11)

where (x̂ , ŷ ) is the estimated horizontal location of the receiver.
The last system of equations can be written in matrix form as

AX̂ = B, (12)

where

X̂ = [ x̂ ŷ ]T ,

A=
[

x2 − x1 y2 − y1

x3 − x1 y3 − y1

]
,

B = [ b21 b31 ]
T . (13)

Here, for any m ∈ {2, 3},

bm1 = (x̂ − x1)(xm − x1)+ ( ŷ − y1)(ym − y1). (14)

The solution to Eq. (12) is

X̂ = (AT A)−1 AT B . (15)

C. Complexity Analysis

The complexity of the proposed averaging RSS technique can be
analyzed by counting the number of mathematical operations
required to solve the LLS method once and then multiplying the
result by the number of samples. The LLS method is done for
each sample to estimate the position of the receiver. Specifically,
each operation (addition, subtraction, multiplication, divi-
sion) can be configured as one floating-point operation (flop).
Accordingly, we get 39 flops for the LLS method. Multiplying
the number of flops by the number of samples and adding one
flop for the average operation, we get a total number of 39N + 1
flops for proposed system, where N is the number of samples.
That is, the complexity increases linearly with the number of
samples.

To determine the complexity of Kalman filtering with the
averaging localization method, we notice that here we get esti-
mates of received powers for the samples one time then average
the received powers. These operations do not depend on the
number of samples. Thus, the total number of flops is constant
even for an increased number of samples. We conclude that the
complexity of the proposed averaging RSS is more than that of
Kalman filtering with averaging.

4. PROPOSED LOCALIZATION METHODOLOGY
USING KALMAN FILTERING WITH AVERAGING

The KF is considered an efficient recursive filter. It estimates the
internal state of a linear system from a series of noisy measure-
ments then produces estimates of unknown variables that tend
to be more accurate than those based on a single measurement.

In this section, a KF algorithm is used to further improve
the estimation of the receiver position. First, the KF estimates
several samples of measured received powers. Next, the aver-
age of these estimated power values is calculated. Using this
estimated average power, the position of the receiver can be
found by the RSS technique. The block diagram of the proposed
Kalman filtering with averaging technique is shown in Fig. 3.
The flowchart in Fig. 4 shows the steps of using a KF with the
AVG method, which explains the algorithm flow. The KF algo-
rithm recursively estimates the state of variables in the system in
two phases: prediction and measurement [17,18].

A. Prediction Step

We denote our state vector by x . This state vector represents
the measured received power and number of samples used in
the process. Based on the estimate at iteration k − 1, we have
state xk−1|k−1. The next step k of the system dynamics xk|k−1 is
evaluated as

xk|k−1 = Fk xk−1|k−1 + vk, (16)
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Fig. 3. Block diagram of proposed Kalman filtering algorithm.

Fig. 4. Flowchart of proposed Kalman filtering algorithm.

where Fk is the state transition matrix, and vk is a white process
noise. The corresponding state covariance matrix is given by

Pk|k−1 = Fk Pk−1|k−1 F T
k + Qk, (17)

where Qk is the covariance of the noise process.

B. Measurement Step

The updated state variable xk|k and updated state covariance
matrix Pk|k are given by

xk|k = xk|k−1 + K k yk,

Pk|k = (I − K k Hk)Pk|k−1, (18)

respectively, where K k is the Kalman gain, yk is the error vector,
and Hk is the observation model:

K k = Pk|k−1 HT
k S−1

k ,

yk = zk − Hk xk|k−1. (19)

Here, zk denotes the measurement vector:

zk = Hk xk +wk, (20)

where wk is the measurement noise. Also, Sk is the innovation
matrix, which relates the covariance of state variables to the
measurement vector:

Sk = Hk Pk|k−1 HT
k + Rk, (21)

where Rk is the covariance of measurement noise.

5. SIMULATION AND DISCUSSION

In this section, simulation results for the proposed system are
presented and compared with those of traditional systems. The
main parameters used in the simulations for the VLC link are
listed in Table 1.

A. Positioning Error

In our simulation, the performance measure is determined by
the positioning error:

Eposition =

√
(x̂ − x0)

2
+ ( ŷ − y0)

2
, (22)

where (x0, y0) is the receiver’s horizontal location, and (x̂ , ŷ )
is its estimated location. Figure 5 shows the average error in
receiver positioning for different numbers of samples. The
positioning error performance for each sample is related to
average the storing positions stream (X avg, Yavg) and where each
sample has different noise that get a jitter of positioning error
performance.

It is clear that the error can be reduced to less than 10% of its
maximum value by averaging over 50 samples.

The mathematics behind this is that for any number of sam-
ples n, the expected value of the positioning error is

E {Eposition(n)} = 0. (23)

For ergodic processes, we have

lim
N→∞

N∑
n=1

Eposition(n)

N
= E {Eposition(n)} = 0, (24)

where N is the total number of samples. Accordingly,∑N
n=1 Eposition(n)/N is a decreasing function with N.

Table 1. Simulation Parameters

Parameter Value

Room dimensions 5× 5× 3 m3

Number of transmitters 4
Total transmitted power per Tx 30 W
Locations of LEDs (1.25, 1.25, 3), (1.25, 3.75, 3),

(3.75, 1.25, 3), (3.75, 3.75, 3)m
FOV of photodetector 70◦

Signal-to-noise ratio (SNR) 20
Active area of photodetector 1 cm2

Wall reflectivity ρ 0.8
Number of samples 50
Range of receiver in room (1–3.5) m over both x , y axes
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Fig. 5. Comparison between average positioning errors versus num-
ber of samples in averaging RSS technique.
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Fig. 6. Complexity of the averaging RSS method.

This reduction, however, comes at the cost of increasing the
mathematical complexity of the system, as shown in Fig. 6. The
complexity is calculated according to the number of operations,
which increases as the number of samples increases.

B. Averaging RSS and Traditional RSS Techniques

The RSS variations of the positioning error at every sample
is shown in Fig. 7(a) for receiver position (x0, y0)= (1, 1),
considering the effect of LOS only. At the place [1,1],
(X avg, Yavg)= (0.7234, 0.7662) for 50 samples with error
in the accuracy nearly (0.2766,0.2338).

For the RSS method, there are random deviations between
the estimates and real values, which are caused due to sys-
tem noises. The average of this random noise is clearly zero.
Accordingly, the proposed averaging RSS can cope with it.

The positioning error using the proposed averaging RSS
technique (with 100 samples) is plotted in the same figure as
well. The improvement using the proposed technique is clear
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Fig. 7. Positioning error for both traditional RSS and averaging
RSS techniques at position (1, 1), considering the effects of (a) LOS
only and (b) both LOS and NLOS.

in the figure. Indeed, traditional RSS errors can reach more
than 0.6 m (42.4%), while the error when using the proposed
averaging RSS is only 0.217 m (15.3%), i.e., an improvement
of about 27.1% is achievable when using the proposed scheme.
The effects of both LOS and NLOS are studied for receiver
position (x0, y0)= (1, 1) as well, and the results are plotted in
Fig. 7(b). The effect of both LOS and NLOS on averaging RSS
tracks’ estimations for the x axis is shown in Fig. 8. Traditional
RSS errors can reach more than 0.7 m (49.5%), while the error
when using the proposed averaging RSS is only 0.255 m (18%),
i.e., an improvement of about 31.5% is achievable when using
the proposed scheme.

C. Kalman Filtering, Averaging RSS, and Traditional
RSS Techniques

In this subsection, we demonstrate several comparisons between
the performance of three methods: traditional RSS, proposed
averaging RSS, and proposed Kalman filtering with averaging.
We use the same parameters as given for the VLC link in Table 1.
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Fig. 9. Track estimations using traditional and proposed techniques
for (a) an x path and (b) a y path, for LOS propagation.

1. LOSPropagation

The effects of LOS on only two tracks’ estimations for both
x and y paths are presented in Figs. 9(a) and 9(b) for both x and
y paths, respectively.

In addition, Figs. 10(a) and 10(b) show similar results for
square and circular tracks, respectively.

It is clear in the figures that both tracks’ estimations are
closer to the real one when using the proposed techniques.
Furthermore, the figures indicate that adopting KF estimation
further reduces the positioning error and provides an estimate
that is very close to reality. The average errors in detecting the
position of the receiver are summarized in Table 2 for the three
techniques. Specifically, the average errors when using tradi-
tional RSS, proposed averaging RSS, and proposed Kalman
filtering with averaging are 18 cm, 12 cm, and 5 cm, respectively.
That is, the improvement in estimation accuracy when using the
proposed averaging RSS and Kalman filtering with averaging are
33.3% and 72.2%, respectively.
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Fig. 10. Track estimations using traditional and proposed
techniques for (a) a square track and (b) a circular track, for LOS
propagation.
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Table 2. Accuracy for Different Techniques Related to
Traditional RSS

Localization Average Positioning Percentage

Method Error Improvement
Traditional RSS 18 cm –
Averaging RSS 12 cm 33.3%
Kalman filtering 5 cm 72.2%

2. Both LOSandNLOSPropagations

The effects of both LOS and NLOS on two tracks’ estimations
for both x and y paths are presented in Figs. 11(a) and 11(b) for
both x and y paths, respectively.

In addition, Fig. 12 shows the results for a square track for
both LOS and NLOS propagations.

It is clear in the figure that both tracks’ estimations are closer
to the real one when using the LOS effect only rather than
using the effects of both LOS and NLOS. The gain results from
NLOS being considered unwanted signal noise, and adding
it decreases accuracy. These simulations have been done in a
typical room as shown in Table 1. Specifically, the figures show
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Fig. 11. Comparison between Kalman filtering track estimation for
both LOS and NLOS propagations for (a) an x path and (b) a y path.
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Fig. 12. Comparison between Kalman filtering square track estima-
tion for both LOS and NLOS propagations.

the proposed Kalman filtering with averaging only because this
method outperforms other methods in previous figures.

3. KalmanFilteringResponse

The Kalman filtering response for a random position estimation
is presented in Fig. 13. The filter input is a measured value of
received power, while the filter output is the corresponding
estimated value at different numbers of samples, where NLOS
here is considered. It is clear in figure that the filtering response
(estimated value) is very close to the real value when the number
of samples is greater than 11 samples only.

D. Mean Squared Error Method

In this section, we adopt the mean squared error (MSE) method
to evaluate the performance of our proposed positioning algo-
rithms. Suppose that we estimate a position location using N
samples with a population of calculated coordinates: {(x1, y1),

(x2, y2), . . . , (xN, y N)}. The MSE is given by [19]
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Fig. 13. Response of Kalman filtering technique.
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MSE=
1

N

N∑
i=1

[
(xi − x̄ )2 + (y i − ȳ )2

]
, (25)

where (x̄ , ȳ ) is the mean of the calculated coordinate:

x̄ =
1

N

N∑
i=1

xi , ȳ =
1

N

N∑
i=1

y i . (26)

In Fig. 14, we plot the MSE for the three estimation tech-
niques used in the paper. We use 50 samples in our simulation
with the same parameters as those listed in Table 1. It is clear that
the proposed system using a KF has the least MSE.

E. Cumulative Distribution Function

The cumulative distribution function (CDF) is another way
to compare the different estimation techniques. We plot in
Fig. 15 the CDFs for the three estimation techniques used in
paper. Again, the proposed Kalman filtering method shows the
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Fig. 15. Cumulative distribution functions for different estimation
techniques.

least values for CDFs when compared to both traditional and
averaging RSS techniques.

F. Position Estimation Accuracy Comparison

As mentioned in the Introduction, several techniques have been
proposed for indoor localization based on VLC technology.
In this section, we provide a comparison between our position
estimation accuracy and that of previous works for the same
simulation parameters. The results of this comparison are
summarized in Table 3.

In Ref. [3], an analytical model is developed considering
both LOS and NLOS effects with FOV= 80◦, transmitted
power of 10 W, detector effective area AR = 0.5 cm2, and room
dimensions of (5, 5, 3)m. They achieve an accuracy of 5 cm.
The corresponding accuracies achieved for both the proposed
averaging RSS and Kalman filtering are 3.7 cm and 3.1 cm,
respectively.

In Ref. [5], a two-phase hybrid algorithm for estimating the
location of a mobile node, which has the capability of meas-
uring signal strength, azimuth, and elevation, in a smart space
environment over the visible light channel is proposed. For
the system parameters in Ref. [5], with the effects of both LOS
and NLOS, FOV= 10− 180◦, transmitted power is 1.9 W,
AR = 0.81 cm2, room dimensions are (4, 4, 3.5)m, and wall
reflectivity is 60%; the achieved accuracy is 13.95 cm. The
corresponding accuracies achieved for both proposed averaging
RSS and Kalman filtering are 9.1 cm and 4.8 cm, respectively.

The effect of only LOS is considered in Ref. [7], where the
hybrid utilization of AOA and RSS information in VLC systems
is investigated for 3D localization with FOV= 85◦, transmit-
ted power of 1 W, AR = 0.81 cm2, and room dimensions of
(5, 4, 3)m. The achieved accuracy is 10 cm, while the corre-
sponding accuracies achieved for both proposed averaging RSS
and Kalman filtering are 6.17 cm and 1.75 cm, respectively.

In Ref. [12], a fusion positioning system based on extended
KFs is proposed, which can fuse the VLC position and the iner-
tial navigation data. The parameters are a room with dimensions
of (3.6, 3.26, 2.5)m, AR = 1 cm2, transmitted power of 17 W,
and seven LEDs; the achieved accuracy is 14.5 cm. The corre-
sponding accuracies achieved for both proposed averaging RSS
and Kalman filtering are 17.4 cm and 3.5 cm, respectively.

In Ref. [13], the authors study tracking a VLC user when the
availability of the VLC AP link changes over the user’s route.
They use room dimensions of (6, 6, 3)m with seven LEDs,
FOV= 25◦, and AR = 1 cm2. The obtained accuracy is 5 cm,
while the corresponding accuracies achieved for both proposed
averaging RSS and Kalman filtering are 11 cm and 2.3 cm,
respectively.

It is clear from the discussion above and Table 3 that both the
proposed averaging RSS and Kalman filtering with averaging
techniques achieve better accuracy than those proposed in
Refs. [3,5,7]. Since the authors in Refs. [12,13] adopt Kalman
filtering, they have better accuracy than our proposed averaging
method. However, employing Kalman filtering with averaging
gives better accuracy.
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Table 3. Position Estimation Accuracy Comparison

References System Parameters Reference Accuracy Averaging System Accuracy Kalman Filtering Accuracy

[3] LOS, FOV= 80◦, PT = 10 W, 5 cm 3.7 cm 3.1 cm
AR = 0.5 cm2, (5, 5, 3)m3, RSS

[5] LOS/NLOS, FOV= 10−180◦, 13.95 cm 9.1 cm 4.8 cm
PT = 1.9 W, AR = 0.81 cm2,

[7] LOS, FOV= 85◦, PT = 1 W, 10 cm 6.17 cm 1.75 cm
AR = 0.81 cm2, (5, 4, 3)m3, (AOA, RSS)

[12] LOS, FOV= 80◦, PT = 17 W, 14.5 cm 17.4 cm 3.5 cm
AR = 1 cm2, (3.6, 3.26, 2.5)m3, EKF

[13] LOS, FOV= 25◦, PT = 17 W, 5 cm 11 cm 2.3 cm
AR = 1 cm2, (6, 6, 3)m3, EKF

6. CONCLUDING REMARKS

Two techniques have been proposed for improving the accuracy
of localization estimation in indoor VLC systems, namely, aver-
aging and Kalman filtering with averaging schemes. Specifically,
in the averaging technique, the receiver position is determined
by averaging multiple samples of RSS estimations. In the
Kalman filtering with averaging algorithm, the position is
determined by an RSS estimation of a Kalman filtering averaged
multiple received power samples. The proposed techniques
have been analyzed mathematically, taking into account the
effects of both LOS and first-reflection from NLOS propaga-
tions. The positioning estimation accuracy of the proposed
techniques have been evaluated in a typical room, and the results
are compared to those of traditional RSS systems. Simulation
results reveal that an improvement of about 33.3% in estima-
tion accuracy is achievable when using the averaging scheme as
compared to that of the traditional RSS scheme. This improve-
ment increases to 72.2% when adopting the proposed Kalman
filtering with averaging scheme.
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