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Position Determination on a Quadrant Detector
Micah Baleya , Hossam Shalaby , Senior Member, IEEE, Kazutoshi Kato , Senior Member, IEEE,

and Maha Elsabrouty , Senior Member, IEEE

Abstract— A quadrant detector (QD) is a widely used technol-
ogy for laser spot position sensing in establishing and maintaining
laser communication links. There is a nonlinear relationship
between the output signal offset and the precise location of the
laser spot on the QD, which impairs position detection accuracy.
To address the problem, this work employs a neural network
ensemble solution. An ensemble of neural networks combines
the predictive power of multiple artificial neural network (ANN)
models, resulting in improved generalization and prediction sta-
bility compared to a single neural network. Test results indicate
that our solution demonstrates a significant improvement in both
the estimated position error and the generalization capability
when compared to individual ANN solutions.

Index Terms— Quadrant detector, radial basis neural network,
feedforward neural network, artificial neural network, neural
network ensemble, laser communication.

I. INTRODUCTION

RECENTLY, a plethora of research focusing on laser com-
munications has emerged in an attempt to complement

RF based communication systems, which for years, prevailed
the communication scene [1]. Laser technology uses smaller
sized components that are lighter and require less power con-
sumption to achieve higher data transmission rates compared
to the RF counterpart, while employing narrow and directional
beams of light [2], [3]. The quadrant detector (QD) senses
the incident light spot and generates photoelectric signals
reflecting the position of the light spot on its surface, with
fast response and high resolution, enabling position detection
and tracking [4]. Nevertheless, the relationship between spot
position on QD and the output signal offset (OSO) is nonlinear.
This results in high detection accuracy of light spot position
around QD center. However, as the spot moves further away
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from the center, the measurements become less accurate.
It should be noted that the accuracy of QD detection affects
the accuracy and stability of the subsequent modules in the
receiver.

In mitigating QD detection non-linearities, several solu-
tions have emerged in the literature. These solutions range
between classical techniques, e.g., curve fitting [5], [6], [7],
and ANN-based methods. ANN have proven to be supe-
rior in performance and provide better fit for modelling
non-linearities.

In [8], an optimized Feedforward Neural Network (FFNN)
model is developed using backpropagation learning and the
Levenberg-Marquardt (LM) algorithm. The developed model
achieved superior performance compared to the fusion method
and eight-order polynomial fitting. To tackle the challenge
of collecting sufficient data from the actual QD for training
an ANN, reference [9] generates QD simulation data using
mathematical formulas. A small amount of actual data and
the simulation data constitute the dataset for training a FFNN
model. The proposed solution outperforms the approach in
[8] as well as the geometric approximation method described
in [10]. In [11], a method for detecting x and y coordinates
for the light spot position using Radial Basis Function Neural
Network (RBFNN) model is proposed. The developed model
outperformed both the FFNN in [8] and seventh-order poly-
nomial fitting.

However, all these studies used a single ANN solution.
Individually, ANN models have their own intrinsic limitations.
An ANN cannot provide a definitive solution for generalizing
a problem [12], as it cannot fully learn all the complex under-
lying features, leading to poor generalization in some parts of
the dataset. In this letter, an innovative solution of neural net-
work ensemble is proposed. Ensemble learning enhances the
stability of spot position predictions and improves accuracy,
by providing better generalization beyond the learned dataset.
Further, this solution can easily be extended to any position
detection system where higher prediction accuracy beyond that
of a single ANN is sought after.

II. LASER SPOT POSITION DETERMINATION ON
QUADRANT DETECTOR

The QD is a photosensitive surfaced sensor that is used
in position determination, alignment, and tracking systems.
It is made up of four symmetrical P-N junction photodiodes
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Fig. 1. QD and incident light spot.

Fig. 2. Output Signal Offset(OSO) vs. x-axis beam displacement on the QD
with varied beam radii.

(Quadrants), which are isolated by a narrow dead zone as
depicted in Fig. 1.

Light falling on the surface of the detector triggers each
photodiode to generate photoelectric signals. The position of
incident light in relation to the detector’s center is estimated
at every instance of time by combining the magnitudes of
electrical signals from the four photodiodes to obtain the OSO
[13]. The OSO formula assumes that the spot touches all the
quadrants, as illustrated in Fig. 1 and the OSO is calculated
as follows:

x̂ =
(IA + ID) − (IB + IC )

IA + IB + IC + ID
,

ŷ =
(IA + IB) − (IC + ID)

IA + IB + IC + ID
, (1)

where x̂ and ŷ represent the degree to which the beam has
deviated from QD origin in the x and y directions. IA, IB ,
IC , and ID are the photoelectric signals from the quadrants.

Using (1), provides a good estimation around the QD
center. However, laser spot’s movement across the QD is not
accurately reflected in the OSO. Figure 2 illustrates the OSO
derived from experimental data from QD, considering various
beam radii. Also, the figure shows the relationship between
the expected spot position and the size of beam radius.

The light spot energy h(x, y) can be approximated by a
Gaussian distribution as follows [5]:

h(x, y) =
2P0

πω2 exp

(
−

2
(
(x − x0)

2
+ (y − y0)

2)
ω2

)
, (2)

where (x0, y0) is the coordinate for the light spot center,
P0 represents the aggregate spot energy, while ω denotes the

beam’s radius. The photoelectric current from each quadrant
is obtained by integrating the energy intercepted over the area
that the spot covers in each individual photodiode, as follows:

Ii ∝

∫∫
Si

h(x, y) dx dy (i = A, B, C, D) , (3)

where Si is the area covered by spot in each photodiode.
In getting the true spot position value the following is used,

x̂ =

∫∫
SA+SD

h(x, y) dx dy −
∫∫

SB+SC

h(x, y) dx dy∫∫
SA+SD

h(x, y) dx dy +
∫∫

SB+SC

h(x, y) dx dy
,

ŷ =

∫∫
SA+SB

h(x, y) dx dy −
∫∫

SC +SD

h(x, y) dx dy∫∫
SA+SB

h(x, y) dx dy +
∫∫

SC +SD

h(x, y) dx dy
. (4)

A simplified expression is obtained by employing infinite
integral method, resulting in the errors of the Gaussian spot
in the position of x and y as follows:

x̂ =
4

πω2

 ∞∫
−∞

2(y − x0)
2

ω2 dy

∞∫
0

−2(x − y0)
2

ω2 dx


= erf

(√
2x0

ω

)
,

ŷ =
4

πω2

 ∞∫
−∞

2(y − x0)
2

ω2 dy

∞∫
0

−2(x − y0)
2

ω2 dx


= erf

(√
2y0

ω

)
, (5)

where erf(.) is error function. The approximate spot position
can then be obtained as follows:

x0 = ω
erf−1 (x̂)

√
2

,

y0 = ω
erf−1 (ŷ)

√
2

, (6)

the expressions further illustrate that the size of beam radius
influences the expected spot position.

III. PROPOSED NEURAL NETWORK ENSEMBLE

This section proposes a stacking-based neural network
architecture, where the final estimation is made by a meta-
learner that intelligently combines the predictions of base
learners.

A. Base Learner Selection

Generally, RBFNN that use a Gaussian function are good
for interpolation because they make a local approximation to
nonlinear input-output mapping. Furthermore, RBFNN do not
have a problem with local minima, which allows for better
generalization. Therefore, we have constructed all level zero
learners using RBFNN.
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Fig. 3. Proposed ensemble training procedure.

B. Meta Learner Selection

FFNN are better suited for extrapolation as they make global
approximations to nonlinear input-output mapping. To com-
plement the interpolation capabilities of RBFNN, we have
constructed the meta learner using FFNN. According to the
universal approximation theorem for FFNN [14], an ANN
utilizing backpropagation algorithm, having a solitary hidden
layer and adequate number of neurons, can approximate an
arbitrary nonlinear function regardless of its complexity. This
work employs a single hidden layer architecture for the sake
of simplicity.

C. Ensemble Development
Figure 3 depicts the ensemble training procedure. The

ensemble has five level-0 RBFNNs and a FFNN meta learner.
During inference, the five base learners operate in parallel
followed by the meta-learner, hence the additional time delay
is minimal to accommodate real-time operation.

Base learners take photoelectric signals as inputs. To achieve
diversity among base learners, [15] suggests three approaches,
we use different spread values for each base learner by
varying this parameter from 0.2 to 1 with a precision of 0.2.
Base learners’ predictions form features for training the meta
learner and they are generated through K -fold cross validation
technique. Where, the training set is divided into K folds, the
base learners are trained on a sample of K − 1 folds and then
make predictions on the out of sample fold. By repeating this
process K times, with a unique out of sample fold each time,
the meta learner training data is generated.

The meta-learner of the 5−8−1 architecture with a logistic
sigmoid transfer function is trained through backpropagation.
Early stopping criteria is employed to avoid over-fitting the
meta-learner by setting aside 15% of the training data for
validation and terminating the training whenever the error on
the validation set starts to increase. Algorithm 1 summarises
the stacking ensemble procedure.

Maximum error (Maxerror ), mean absolute error (MAE),
and root mean squared error (RMSE) are used to evaluate the
performance of the developed model. They are defined as:

Maxerror = max{|ti − pi |}, i = 1, 2, 3 . . . N , (7)

M AE =
1
N

N∑
i=1

|ti − pi |, (8)

Algorithm 1 Stacking Ensemble
Input : 1.Training data

2. T level-0 learning algorithms
Output: Neural network ensemble

1 Initialization: 1. Storage for trained base learners
2. Randomly divide the training set into K folds

2 for j = 1, . . . , T do
3 - Create a base learner
4 for l = 1, . . . , K do
5 - Train the base learner on K − 1 folds
6 - Make predictions on the K th out of sample

fold
7 - Store the predictions
8 end
9 - Train the base learner on the whole training set

10 - Add the trained model to the ensemble
11 end
12 - Train a meta learner using the K th fold predictions

Fig. 4. Error comparison between ensemble and the complex models by
considering 0.75 mm beam radius.

RM SE =

√
1
N

6N
i=1

(
ti − pi

)2
, (9)

where N denotes the number of examples, pi is the i th

predicted value and ti is the i th actual value.

IV. SIMULATIONS AND RESULTS

Simulations are conducted in MATLAB R2023a using
experimental data from [8]. The data was collected from a QD
with a 1.5 mm radius and a range of −0.5 mm to 0.5 mm along
the x axis was observed on the QD. The incident beam radii
were at 0.55 mm, 0.75 mm, 0.95 mm, and 1.15 mm. Sets of
501 samples from each beam radius are used and subsequently
divided into 451 training and 50 testing samples. The proposed
ensemble learning algorithm is compared to the FFNN in [8]
and the RBNN network in [11] as well as to FFNN and RBNN
employing the same number of parameters as the proposed
ensemble in one hidden layer, which are named C-FFNN and
C-RBFNN, respectively. With a 0.75 mm beam radius, the
error performance as a function of x-axis is shown in Fig. 4.
The ensemble model demonstrates reduced error fluctuations
compared to the other two models of similar complexity.
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TABLE I
PERFORMANCE OF THE MODELS WITH VARIED BEAM RADIUS

Table I presents results (in mm) for the different models
in comparison. The proposed model has superior performance
for all beam radii. Considering the 0.75 mm beam radius,
as an example, the proposed model achieves RMSE, which
is 26.36% lower than RBFNN [11] and 43.32% lower than
FFNN [8]. Compared to the ANNs of the same complexity,
the ensemble achieves RMSE of 33.53% lower than C-FFNN
and 25.59% lower than C-RBFNN.

V. CONCLUSION

An ensemble of ANNs is proposed to improve the
performance of QD. Previous studies considered single ANN

models, which could be affected by the intrinsic limitations of
the individual ANN,i.e. the inability to learn all underlining
features. On the contrary, in an ensemble, limitations of one
learner are alleviated by the other learners. The proposed
solution outperforms both FFNN and RBFNN even for the
same number of parameters, i.e. complexity, making it a viable
choice for an improved QD position estimation.
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