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Abstract—A simplified mathematical model for evaluating the
performance of optical burst switching networks is proposed.
This model is described using a detailed state diagram. Two per-
formance measures, namely, steady-state system throughput and
average blocking probability, are derived based on the equilibrium
point analysis technique. The effects of several design parameters
on the above performance measures have been examined with the
aid of a set of numerical examples.

Index Terms—Bursty traffic, equilibrium point analysis (EPA),
just-in-time (JIT) protocol, optical burst switching (OBS), optical
networks, wavelength conversion.

I. INTRODUCTION

O PTICAL BURST switching (OBS) is a new wavelength
division multiplexing technology that retains some of

the advantages of optical packet switching, yet is being more
practical and realizable in the near future. This technology was
first proposed by Qiao and Yoo [1], and then, many authors
have studied it thoroughly, e.g., in [2]–[12]. The performance
of OBS has appeared in literature by several authors, e.g., in
[3], [7], [10], and [11]. This paper introduces a new simplified
analytical model that can easily measure the performance of
the OBS network and confer the alternatives to various design
constraints.

A. System Architecture

The basic architecture of an OBS network is composed
of a set of N interconnected nodes and a set of available
wavelengths of cardinality w. An ingress node assembles the
Internet protocol packets, that are coming from the local access
networks and destined to the same egress node, into large
bursts. A core node is composed of an optical cross-connect
(OXC) fabric and a set of wavelength converters of cardinality
u ∈ {0, 1, . . . , w}. Each ingress node sends a control packet
before the transmission of the optical burst starts. This control
packet contains an information about the sender, receiver, and
transmission wavelength of the corresponding burst. Its main
function is to configure all the core nodes along the path to des-
tination so that the burst travels smoothly in the optical domain
without the need to be converted into the electrical domain.
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Fig. 1. (a) Transmission of an optical burst. (b) Slotted timing diagram.

B. OBS Protocol

In this paper, we focus on a one-way protocol, which is a
modification of the just-in-time (JIT) protocol, for our OBS
network [4], [5]. In this protocol, a wavelength is reserved
(in a core node) for a burst immediately after the arrival of
the corresponding control packet; if a wavelength cannot be
reserved at that time, then the control packet is rejected and
the corresponding burst is said to be blocked and dropped.
Fig. 1(a) illustrates the operation of JIT-OBS protocol. Let a
control packet C arrives at some OBS core node along the path
to the destination. Once the processing of C is complete, a
wavelength is immediately reserved for the upcoming burst, and
the operation to configure the OXC fabric to switch the burst is
initiated. It should be noticed that the optical burst arrives at the
OBS node under consideration after an offset time Toff from
the arrival of the control packet [Fig. 1(a)], which takes care of
the processing and configuration times of the control packet and
OXC fabric, respectively. Thus, the total time T spent from the
transmission of the control packet until the end of the optical
burst is

T = Tc + Toff + Tb

where Tc and Tb are the control packet and optical burst time
durations, respectively.

C. Aim of the Paper

Obviously, if two control packets are to reserve the same
wavelength at a given core node for two different bursts, then
only one burst will be offered to this wavelength. The other will
be blocked and lost (unless there is an available wavelength
converter). Wavelength conversion can be used at some core
nodes to relax the above contention problem and reduce the
loss probability. Unfortunately, optical wavelength converters
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are too expensive and make the optical burst switches less
competitive than electronic routers [8]. A simple question may
be raised: Can we simply increase the number of available
wavelengths rather than installing more wavelength converters
and get the same performance?

In this paper, we aim at answering the above question and
exploring the tradeoff between installing more wavelength con-
verters and increasing the number of available wavelengths. To
achieve our aims, we first describe a simplified state diagram
of an OBS protocol. When trying to examine the network
performance, we face a prohibitively large number of states,
which makes the problem analytically intractable. Fortunately,
the equilibrium point analysis (EPA) technique significantly
simplifies the problem and makes it more tractable. This tech-
nique has been used successfully in studying the optical code
division multiple access protocols [13] and motivates us to
apply it here. In this technique, the system is always assumed
to be operating at an equilibrium point. That is, at any time slot,
the expected number of users entering any state is always equal
to that departing from the state.

D. Paper Organization

The remainder of this paper is organized as follows. In
Section II, we introduce a mathematical model and a basic
description of the state diagram of the investigated protocol.
Section III is devoted for a theoretical study for the performance
of an OBS network with no wavelength conversions, where
derivations of both the steady-state system throughput and aver-
age blocking probability are given. Considerations of the OBS
networks with wavelength conversion capabilities are studied
in Section IV. Section V is maintained for a numerical study
of the derived performance measures by taking into account the
effect of changing several design parameters. Finally, we give
our conclusion in Section VI.

II. MATHEMATICAL MODEL

Our mathematical model depends on the construction of a
state diagram that describes the status of an OBS node. We start
by some definitions and preliminaries.

A. Slotted Timing Model

In our analysis, we use a slotted timing model [Fig. 1(b)] in
which we divide the entire period T into small time slots, each
of duration Ts, called slot time. The total number of slots � is
calculated as

� =
T

Ts

where we assume, without loss of generality, that � is an integer.
In addition, we can assume that Ts is a multiple of the bit
duration and will be held fixed throughout this paper. It should
be emphasized that during a time slot Ts, the node would get
enough information about the selected wavelength.

B. Time Slots and Burst Arrivals

We assume that the optical bursts (or control packets) arrive
to any OBS node with rate Rb bursts/s. In addition, the arrival
process follows a Poisson distribution. Thus, the probability
that n bursts arrive to an OBS node during time slot i ∈
{1, 2, . . . , �} is given by

Pb(n) = e−RbTs
(RbTs)n

n!
, n ∈ {0, 1, . . .}.

Furthermore, we assume that the time slot duration Ts is small
enough so that Pb(n) � 0 for every n ≥ 2. Thus, the last
equation can be simplified to

Pb(n) =




e−RbTs � 1 − A, if n = 0
e−RbTsRbTs � A, if n = 1
e−RbTs (RbTs)n

n! � 0, else

where A denotes the probability of a burst arrival within a
slot time, also called the user activity. It should be noted that,
under fixed bit rate and transmission bandwidth, the proba-
bility of a burst arrival A decreases as we increase the burst
length � so that their product is fixed. This product A�, which
is a measure to the data traffic, will be called the network
traffic κ:

κ
def= A� bursts/burst time.

C. Initial State and Transition Probabilities

We assume that initially, an OBS node is in state m, called
the initial state (Fig. 2). If there is an arrival (with probability
A), the OBS node will enter the following state r1 and starts
processing the control packet (cf. Fig. 2). On the other hand,
if there is no arrivals (an event that occurs with probability
1 − A), the OBS node will remain as is.

D. State Diagram

In the following two sections, we describe the state diagram
of our OBS network models. We study here two models de-
pending on the availability of the wavelength converters. In one
model, we assume that there is no wavelength conversion in
any OBS node. In the other model, however, we assume that
there are wavelength conversion capabilities in all OBS nodes.
In order to simplify the analysis and have some insight on the
problem under consideration, we start by a simplified model
and generalize it in a later stage. In any model, we always
consider an OBS network with w wavelengths available for
transmission of bursts. In addition, we assume that all bursts
that arrive to an OBS node are of fixed lengths, as shown in
Fig. 1. That is, an OBS node needs � time slots to serve any
accepted burst arrival. Although this assumption is not easy to
achieve [5], we adopt it here in order to simplify the analysis.
In a more realistic scenarios, � can be considered as the average
number of time slots.
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Fig. 2. State diagram for an OBS network with � = 3 and w ≥ �. The stars denote blocking probabilities.

III. OBS NETWORKS WITH NO

WAVELENGTH CONVERSIONS

In this section, we focus on the case where there is no
wavelength conversion in any OBS node. We start our analysis
with a simplified model, namely with � = 3, and generalize it
in a later stage.

A. State Diagram for an OBS Network With � = 3 and w ≥ �

In this section, we consider an OBS network with � = 3 and
w ≥ �. The state diagram can be constructed as shown in Fig. 2.
There are four types of states, each labeled by the probability
of an OBS node being in the state.

1) Initial state {m}: An OBS node is in this state (with
probability m) if it is not serving any burst. After staying
in the initial state for Tss, one of the two events happens.
Either there is an arrival to the node (an event that occurs
with probability A) or there are no arrivals. In the first
case, the OBS node will enter state r1 (defined below),
whereas in the second case, the node will remain as is.

2) 1-λ states {r1, r2, . . . , r�}: An OBS node is in these
states if it is using one of the available wavelengths (as
identified in the control packet). That is, for � = 3, if an
OBS node is in state m and there is an arrival, it will
reserve one of the available wavelengths and enter state
r1. If it is in state r1 and there are no arrivals after Tss,
it enters state r2 (corresponding to time slot 2). On the
other hand, if it is in state r1 and there is an arrival that
needs to use the same wavelength (an event that occurs
with probability A/w), the burst will be blocked and

the node will again enter state r2. However, if the node
is in state r1 and there is an arrival that needs to use
another wavelength (an event that occurs with probability
A(w − 1)/w), the node will serve both bursts and enters
state r21 (defined below). The process on these states is
the same until being in the last state r� = r3, where after
staying for Tss in this state, the node returns back to the
initial state if there are no arrivals (where the current burst
has already served) or returns to state r1 if there is a new
arrival.

3) 2-λ states {r21, r31, r32}: An OBS node is in these states
if it is using two of the available wavelengths and is
serving two different bursts. That is, the node is in state
rij , i, j ∈ {1, 2, 3} and i > j, if it is serving slots i and j
of the two bursts. For example, if the node is in state r21,
then it is serving slot 2 of the first burst and slot 1 of the
second burst. After Tss, if there is an arrival that needs to
use one of the reserved wavelengths (an event that occurs
with probability 2A/w), it will be blocked, and the node
enters state r32 to serve slot 3 of the first burst and slot 2
of the second burst. If the arrival, however, needs to use
another wavelength, it will be served, and the node enters
state r321 to serve slot 3 of the first burst, slot 2 of the
second burst, and slot 1 of the new burst.

4) 3-λ state {r321}: An OBS node is in this state if it is using
three of the available wavelengths and is serving three
different bursts (as mentioned above). For example, if the
node is in state r321, it is serving slot 3 of the first burst,
slot 2 of the second burst, and slot 1 of the third burst. If
after Tss there are no arrivals (an event that occurs with
probability 1 − A), then the node enters state r32 to serve
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slot 3 of the second burst and slot 2 of the third burst,
where the first burst has already been done.

The rest of the state diagram can be easily followed in a
similar way.

B. Theoretical Analysis

We start by writing the flow equations of the above state
diagram. We should emphasize that each state is labeled by its
probability.

r1 = A(m + r3)

r2 =
(

1 − A +
A

w

)
(r1 + r31)

r3 =
(

1 − A +
A

w

)
(r2 + r32)

r21 =
(

A − A

w

)
(r1 + r31)

r31 =
(

A − A

w

)
(r2 + r32)

r32 =
(

1 − A +
2A

w

)
(r21 + r321)

r321 =
(

A − 2A

w

)
(r321 + r21). (1)

It can be shown (using some algebraic manipulations) that the
above equations reduce to

r1 = r2 = r3 =
A

1 − A
· m =

w

w · 1−A
A

· m

r21 = r31 = r32 =
(w − 1)A2

[w − (w − 1)A] (1 − A)
· m

=
w

w · 1−A
A

· w − 1
w · 1−A

A + 1
· m

r321 =
(w − 1)(w − 2)A3

[w − (w − 2)A] [w − (w − 1)A] (1 − A)
· m

=
w

w · 1−A
A

· w − 1
w · 1−A

A + 1
· w − 2
w · 1−A

A + 2
· m. (2)

Imposing the condition that the sum of all probabilities
equals to 1

m + 3r1 + 3r21 + r321 = 1 (3)

we can obtain the probability that an OBS node is in the initial
state m:

m =

[
1 + 3 · w

w · 1−A
A

+ 3 · w

w · 1−A
A

· w − 1
w · 1−A

A + 1

+
w

w · 1−A
A

· w − 1
w · 1−A

A + 1
· w − 2
w · 1−A

A + 2

]−1

. (4)

C. State Diagram for an OBS Network With � = 3 and w < �

In this section, we consider an OBS network with � = 3 and
w < �.
Case 1—w = 2: In this case, state r321 = 0 in (1)–(3), and

the state diagram is the same as that in Fig. 2 but when removing
state r321 and all arrows to or from it.
Case 2—w = 1: In this case, states r21 = r31 = r32 =

r321 = 0 in (1)–(3), and the state diagram is the same as that
in Fig. 2 but when removing states r21, r31, r32, r321 and all
arrows to or from them. Of course, (4) reduces to

m=




[
1+3 · w

w· 1−A
A

+3 · w
w· 1−A

A

· w−1
w· 1−A

A +1

]−1

, if w=2[
1+3 · w

w· 1−A
A

]−1

, if w=1.

D. Steady-State Throughput and Blocking Probability

In this section, we calculate both the throughput and the
blocking probability in our OBS network. The steady-state
throughput β(A, �, w) is defined as the average number of
successfully received bursts/burst time:

β(A, �, w) =
�∑

i=1

ri +
�∑

i=j+1

�−1∑
j=1

2rij

+
�∑

i=j+1

�−1∑
j=k+1

�−2∑
k=1

3rijk + · · ·

+
�∑

i�=i�−1+1

�−1∑
i�−1=i�−2+1

· · ·
2∑

i2=1

(� − 1)ri�i�−1···i2 + �r�(�−1)···1. (5)

For the example above (� = 3), (5) reduces to

β(A, 3, w) =




3(r1 + 2r21 + r321), if w ≥ 3
3(r1 + 2r21), if w = 2
3r1, if w = 1.

The steady-state blocking probability PB(A, �, w) is defined as
the probability that an arrival is being blocked. Referring to
Fig. 2, it is given by

PB(A, 3, w) = r1 · A

w
+ r2 · A

w
+ r31 · A

w
+ r32 · A

w

+ r21 · 2A

w
+ r321 · 2A

w

=
A

w
· 2(r1 + 2r21 + r321)

=
2A

3w
β(A, 3, w).
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Fig. 3. Generation of an n-λ state: (a) i1 = 1. (b) i1 �= 1.

E. General Model

We consider an OBS network with w wavelengths and fixed-
length bursts (each of length � ≥ 1 time slots). In addition, we
assume that the user activity is A and there are no wavelength
converters per any node. Fig. 3 shows an n-λ state rin,in−1,...,i1

(where n ∈ {1, 2, . . . , � ∧ w} and i1, i2, . . . , in ∈ {1, 2, . . . , �}
with in > in−1 > · · · > i1. Here, � ∧ w

def= min{�, w}). The
node in this state is serving slot in of the first burst, slot in−1

of the second burst, and so on. Two different scenarios may
generate this state.

1) i1 = 1: That is, the above node is serving first slot
of a new arrival. The previous states are, thus, either
an (n − 1)-λ state rin−1,in−1−1,...,i2−1 or an n-λ state
r�,in−1,in−1−1,...,i2−1 [Fig. 3(a)]. The transition probabil-
ity is given by

Pn1 = Pr{a new arrival}
· Pr{the arrival selects an unused wavelength}

= A

[
1 − (n − 1)

w

]

= A − (n − 1)A
w

.

The corresponding flow equation is thus

rin,in−1,...,i2,1 =
[
A − (n − 1)A

w

]

× (
rin−1,in−1−1,...,i2−1 + r�,in−1,in−1−1,...,i2−1

)
. (6)

2) i1 
= 1: That is, there is either no new arrival or the
new arrival is blocked. The previous states are either
an n-λ state rin−1,in−1−1,...,i1−1 or an (n + 1)-λ state
r�,in−1,in−1−1,...,i1−1 [Fig. 3(b)]. The transition probabil-
ity in this case is given by

Pn2 = Pr{no arrivals} + Pr{a new arrival}
· Pr{the arrival selects a used wavelength}

= 1 − A +
nA

w
.

The corresponding flow equation is thus

rin,in−1,...,i2,i1 =
[
1 − A +

nA

w

]

× (
rin−1,in−1−1,...,i1−1 + r�,in−1,in−1−1,...,i1−1

)
. (7)

Solution of the State Equations: The complete set of state
equations is described by (6) and (7) for any n ∈ {1, 2, . . . ,
� ∧ w}. Similar to (2), the unique solution occurs when all
n-λ states are equal. That is, for any i1, i2, . . . , in ∈
{1, 2, . . . , �} with in > in−1 > · · · > i1:

rin,in−1,...,i2,i1 = en

where en can be determined by substitution in (6) and (7):

en =
[
A − (n − 1)A

w

]
(en−1 + en)

⇒ en =
A − A

w · (n − 1)
1 − A + A

w · (n − 1)
en−1

en =
[
1 − A +

nA

w

]
(en + en+1)

⇒ en+1 =
A − A

w · n
1 − A + A

w · nen.

The similarity of the two equations ensures the consistency of
our solution. Performing the induction method on one of the
last equations yields

ek =
k−1∏
i=0

w − i

w · 1−A
A + i

· e0 =
k−1∏
i=0

w − i

w · 1−A
A + i

· m.

The value of the initial probability m can be determined by
imposing the condition that the sum of all probabilities equals
to 1:

m +
�∧w∑
n=1

(
�

n

)
en =1

⇒ m =

[
1 +

�∧w∑
n=1

(
�

n

) n−1∏
i=0

w − i

w · 1−A
A + i

]−1

.
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Hence, for any k ∈ {1, 2, . . . , � ∧ w}

ek
def=

k−1∏
i=0

w − i

w · 1−A
A + i

1 +
�∧w∑
n=1

(
�
n

) n−1∏
i=0

w−i
w· 1−A

A +i

. (8)

Steady-State Throughput and Blocking Probability: The fol-
lowing theorem provides the expressions for both the steady-
state throughput and blocking probability for the generalized
model.
Theorem 1: In an OBS network with w wavelengths and

fixed-length bursts (each of length � ≥ 1 time slots), if the user
activity is A and there are no wavelength converters per any
node, then the steady-state throughput and blocking probability
are given by

β(A, �, w) =
�∧w∑
k=1

(
�

k

)
· kek

PB(A, �, w) =
A(� − 1)

w�
· β(A, �, w)

respectively. Here, ek, k ∈ {1, 2, . . . , � ∧ w} are given by (8).
Proof: The proof is a simple generalization for the case of

� = 3. Indeed, for w ≥ �, β(A, �, w) can be reduced to

β(A, �, w)=
�∑

i=1

e1+
�∑

i=j+1

�−1∑
j=1

2e2+
�∑

i=j+1

�−1∑
j=k+1

�−2∑
k=1

3e3+ · · ·

+
�∑

i�=i�−1+1

�−1∑
i�−1=i�−2+1

· · ·
�−�∧w+1∑

i�−�∧w+1=1

(�∧w)·e�∧w

= �·e1+
(

�

2

)
·2e2+

(
�

3

)
·3e3 + · · ·

+
(

�

�∧w

)
·(�∧w)·e�∧w

=
�∧w∑
k=1

(
�

k

)
·kek.

The proof of the blocking probability PB(A, �, w) can be
performed as follows. Consider an n-λ state rin,in−1,...,i1

(where n ∈ {1, 2, . . . � ∧ w} and i1, i2, . . . , in ∈ {1, 2, . . . , �}
with in > in−1 > · · · > i1). The node in this state is serving
slot in of the first burst, slot in−1 of the second burst, and so on.
After Tss, if there is an arrival that needs to be served, then two
blocking cases may arise.

1) If in 
= �, the arrival will be blocked with prob-
ability nA/w. The blocked node will enter state
rin+1,in−1+1,...,i1+1.

2) If in = �, the arrival will be blocked with probabil-
ity (n − 1)A/w. The blocked node will enter state
rin−1+1,...,i1+1.

The blocking probability PB(A, �, w, n) for this node is thus

PB(A, �, w, n)

= en ·
[
n

A

w
· number of times (in 
= �) occurs in

rin,in−1,...,i1 +(n−1)
A

w
· number of times

(in =�) occurs in rin,in−1,...,i1

]

= en · A

w

[
n

(
� − 1

n

)
+ (n − 1)

(
� − 1
n − 1

)]

= en · A

w
· � − 1

�
· n

(
�

n

)
.

Thus, the total blocking probability is

PB(A, �, w) =
�∧w∑
k=1

PB(A, �, w, k)

=
A

w
· � − 1

�
·

�∧w∑
k=1

(
�

k

)
· kek

=
A(� − 1)

w�
· β(A, �, w). �

IV. OBS NETWORKS WITH WAVELENGTH

CONVERSION CAPABILITIES

In this section, we focus on the case where there are some
wavelength conversion capabilities in all OBS nodes.

A. General Model

We consider an OBS network with w wavelengths. The set

of available wavelengths is denoted by Λ def= {λ1, λ2, . . . , λw}.
In addition, each node in the network is equipped with u wave-
length converters, u ∈ {0, 1, 2, . . . , w}. Only u wavelengths of
Λ can be converted to any other wavelength in the set; the rest
w − u wavelengths cannot be converted. The factor

ρ
def=

u

w
, 0 ≤ ρ ≤ 1

is called the network conversion capability. If ρ = 0, then the
network has no conversion capability, whereas if ρ = 1, then
the network has a full conversion capability. It can be assumed
that, at any node, all wavelengths are available in a pool. When
an arriving burst is to be served with a specific wavelength, this
wavelength is removed from the pool until after the service
is complete. If another arriving burst is to be served with
a wavelength not available in the pool, it will be converted
to another one from the pool. This latter wavelength is then
removed, and u is decreased by one. Blocking occurs whenever
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the pool is empty, or a used wavelength is needed while u = 0.
The state diagram in this case can be described as follows.
Consider an n-λ state rin,in−1,...,i1 (where n ∈ {1, 2, . . . � ∧ w}
and i1, i2, . . . , in ∈ {1, 2, . . . , �} with in > in−1 > · · · > i1).
Three different scenarios may generate this state.

1) i1 = 1: That is, the above node is serving a new
arrival. The previous states are either an (n − 1)-λ state
rin−1,in−1−1,...,i2−1 or an n-λ state r�,in−1,in−1−1,...,i2−1.
The transition probability is given by

Pn1 = Pr{a new arrival}
· Pr{the arrival selects an unused wavelength

or a convertible used wavelength}

= A ·
(

1 − n − 1
w

+ ρ
n − 1

w

)

= A − (1 − ρ)
(n − 1)A

w
.

The corresponding flow equation is thus

rin,in−1,...,i2,1 =
[
A − (1 − ρ)

(n − 1)A
w

]

× (
rin−1,in−1−1,...,i2−1 + r�,in−1,in−1−1,...,i2−1

)
. (9)

2) i1 
= 1 and (w ≥ � or n 
= w): That is, there is either
no new arrival or the new arrival is blocked. The previ-
ous states are either an n-λ state rin−1,in−1−1,...,i1−1 or
an (n + 1)-λ state r�,in−1,in−1−1,...,i1−1. The transition
probability in this case is given by

Pn2 = Pr{no arrivals} + Pr{a new arrival}
· Pr{the arrival selects a

nonconvertible used wavelength}
=1 − A + A · (1 − ρ)

n

w

=1 − A + (1 − ρ)
nA

w
.

The corresponding flow equation is thus

rin,in−1,...,i2,i1 =
[
1 − A + (1 − ρ)

nA

w

]

× (
rin−1,in−1−1,...,i1−1+ r�,in−1,in−1−1,...,i1−1

)
. (10)

3) i1 
= 1, w < �, and n = w: That is, there is either no new
arrival or the new arrival is blocked. Here, the previous
state should be a w-λ state riw−1,iw−1−1,...,i1−1. The
transition probability in this case is unity Pn3 = 1, and
the corresponding flow equation is thus

riw,iw−1,...,i2,i1 = riw−1,iw−1−1,...,i1−1. (11)

Solution of the State Equations: The complete set of state
equations is described by (9)–(11) for any n ∈ {1, 2, . . . ,
� ∧ w}. Again, the unique solution occurs when all n-λ states

are equal. That is, for any i1, i2, . . . , in ∈ {1, 2, . . . , �} with
in > in−1 > · · · > i1:

rin,in−1,...,i2,i1 = en

where en can be determined by a substitution in (9)–(11):

en =
A − (1 − ρ)(n − 1)A/w

1 − A + (1 − ρ)(n − 1)A/w
en−1

=
w − (1 − ρ)(n − 1)

w · 1−A
A + (1 − ρ)(n − 1)

· en−1.

After some algebraic manipulations as were done earlier, we
get for any k ∈ {1, 2, . . . , � ∧ w}:

ek
def=

k−1∏
i=0

w−i(1−ρ)

w· 1−A
A +i(1−ρ)

1 +
�∧w∑
n=1

(
�
n

) n−1∏
i=0

w−i(1−ρ)

w· 1−A
A +i(1−ρ)

. (12)

Steady-State Throughput and Blocking Probability: The fol-
lowing theorem provides expressions for both the steady-state
throughput and blocking probability for the generalized model.
Theorem 2: In an OBS network with w wavelengths and

fixed-length bursts (each of length � ≥ 1 time slots), if the user
activity is A and the conversion capability in any node is ρ,
ρ ∈ {0, 1/w, 2/w, . . . , 1}, then the steady-state throughput and
blocking probability are given by

β(A, �, w, ρ)

=
�∧w∑
k=1

(
�

k

)
· kek

PB(A, �, w, ρ)

=

{
A(�−1)

w� (1 − ρ) · β(A, �, w, ρ), if w ≥ �
A(�−1)

w� (1−ρ)·β(A, �, w, ρ)+
(

�−1
w

)
Aρ·ew, if w<�

respectively. Here, ek, k ∈ {1, 2, . . . , � ∧ w} are given by (12).
Proof: The proof of the throughput β(A, �, w, ρ) is ex-

actly the same as that of theorem 1. The proof of the first
assertion of blocking probability PB(A, �, w, ρ) is also exactly
the same as that of theorem 1. The proof of the second assertion
of blocking probability can be performed as follows. Assume
that w < �, and consider an n-λ state rin,in−1,...,i1 (where
n ∈ {1, 2, . . . w} and i1, i2, . . . , in ∈ {1, 2, . . . , �} with in >
in−1 > · · · > i1). After Tss, if there is an arrival that needs to
be served, then three blocking cases may arise.

1) If in = �, the arrival will be blocked with probability
(1 − ρ)(n − 1)A/w. The blocked node will enter state
rin−1+1,...,i1+1.

2) If in 
= � and n 
= w, the arrival will be blocked with
probability (1 − ρ)nA/w. The blocked node will enter
state rin+1,in−1+1,...,i1+1.

3) If in 
= � and n = w, the arrival will be blocked
with probability A. The blocked node will enter state
rin+1,in−1+1,...,i1+1.
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Thus, if n 
= w, the blocking probability PB(A, �, w, ρ, n) for
this node is given by

PB(A, �, w, ρ, n) =
A(� − 1)

w�
(1 − ρ) · n

(
�

n

)
en.

If n = w, however, it is given by

PB(A, �, w, ρ, w)

= ew ·
[
A · number of times (iw 
= �) occurs in

riw,iw−1,...,i1 + (1 − ρ)(w − 1)
A

w

· number of times (iw =�)

occurs in riw,iw−1,...,i1

]

=
A

w

[
w

(
� − 1

w

)
+ (1 − ρ)(w − 1)

(
� − 1
w − 1

)]
ew

=
A

w

[
(1 − ρ)w

(
� − 1

w

)

+ (1 − ρ)(w − 1)
(

� − 1
w − 1

)
+ ρw

(
� − 1

w

)]
ew

=
A(� − 1)

w�
(1 − ρ) · w

(
�

w

)
ew + Aρ

(
� − 1

w

)
ew.

Thus, the total blocking probability in this case is

PB(A, �, w, ρ) =
w∑

k=1

PB(A, �, w, ρ, k)

=
A(� − 1)

w�
(1 − ρ) · β(A, �, w, ρ)

+
(

� − 1
w

)
Aρ · ew. �

V. NUMERICAL RESULTS

Both the steady-state system throughput and average block-
ing probability derived above have been evaluated under differ-
ent network parameters. Our results are plotted in Figs. 4–7.
A burst length of � = 500 slots is held fixed in all figures
but Fig. 7. An average network traffic constraint of κ ≤ 50
bursts/burst time is imposed in all figures. This keeps the user
activity A below 0.1 bursts/slot time.

In Fig. 4, the average throughput has been plotted versus
the average network traffic for a fixed number of wavelengths
w = 16 and different conversion capabilities ρ ∈ {0, 0.5, 1}.
General and expected trends of the curves can be noticed.
Indeed, the throughput increases as the network traffic increases

Fig. 4. Average throughput versus network traffic for different conversion
capabilities and the same number of wavelengths.

Fig. 5. Average throughput versus network traffic for different conversion
capabilities and a constraint on the sum of the available wavelengths and
wavelength converters.

Fig. 6. Average throughput versus conversion capability for different network
traffics and a constraint on the sum of the available wavelengths and wavelength
converters.

and as the conversion capability increases. In addition, it can
be deduced that the normalized throughput decreases as κ
increases. Of course, as ρ increases, the system complexity
and cost increases as well. Indeed, the optical wavelength
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Fig. 7. Average blocking probability versus conversion capability for different
burst lengths and a constraint on the sum of the available wavelengths and
wavelength converters.

conversion remains expensive, and there are no realistic expec-
tations that it will become cheap in the near future. This makes
the comparison between the different curves unfair.

To make the comparison somewhat fair, we proceed as
follows. Assume that the initial number of wavelengths in a
given node is w0. If we wish to increase the node resources,
then we either increase the number available wavelengths by
v ∈ {0, 1, . . . , w0} and/or install wavelength converters u ∈
{0, 1, . . . , w0} so that

u + v = w0.

The total number of available wavelengths w is related to the
conversion capability ρ = u/w as follows:

w =w0 + v

=w0 + (w0 − u)

=2w0 − ρw

⇒ w =
2w0

1 + ρ
. (13)

This relation provides a tradeoff between the number of avail-
able wavelengths and the conversion capability. For example,
if a node has full conversion capability ρ = 1, then the total
available wavelengths is only w = w0. On the other hand, if a
node has no conversion capability ρ = 0, then the total avail-
able wavelengths is w = 2w0. Using the condition above with
w0 = 8, the average throughput has been plotted in Fig. 5
versus the average network traffic for different conversion
capabilities ρ ∈ {0, 1/3, 1}. The curves are competitive to each
other depending on the traffic. For example, if the traffic is low,
then the systems with higher conversion capabilities perform
better than that with lower conversion capabilities. This con-
clusion reverses if the traffic is high. The reason is that, for low
traffic, most available wavelengths’ pipes are free; therefore,
if two bursts with the same wavelength arrive, one can use a
wavelength converter to switch one of them to another pipe. On

the other hand, for high traffic, most of the pipes are full, and the
need of wavelength converter is not as important as installing
more pipes to relax the high load.

A deeper study of the last conclusion has been performed,
and its results are plotted in Fig. 6, with w0 ∈ {16, 32}.
It can be seen that for a fixed traffic and condition (13)
satisfied, the throughput changes with the conversion capa-
bility, and an optimum value of ρopt that maximizes the
throughput always exists. This ρopt decreases as the traffic in-
creases and increases as w0 increases, confirming our previous
conclusion.

Finally, in Fig. 7, the average blocking probability has
been plotted versus the conversion capability [with w0 = 32
and condition (13) satisfied] for different burst lengths � ∈
{500, 750, 1000} slots. It can be seen that the blocking prob-
ability decreases as � increases. The reason is that, as � in-
creases (with slot duration fixed), more arriving packets are
combined into one large burst, reducing the number of com-
peting bursts and, hence, reducing the blocking probability. It
should be noticed that the blocking probability improves by
the same factor of the increase in length. It should be noted
that the price to be paid by increasing � is the increase of the
packet latency.

VI. CONCLUDING REMARKS

Simplified mathematical model has been proposed for eval-
uating the performance of OBS networks. Two main perfor-
mance measures have been derived based on the EPA technique.
These measures are the steady-state system throughput and
average blocking probability. The effects of several design
parameters on the system performance measures have been
investigated and presented numerically. In order to have some
insight on the problem under consideration, focus has been
given to the wavelength blocking only, and other sources of
noise have been neglected. To have a somewhat fair comparison
between different systems, a formula that compensates for the
tradeoff between system complexity and total number of wave-
lengths has been derived.The following concluding remarks can
be extracted from our results.

1) Lower conversion capabilities and higher number of
wavelengths are more suitable if the network traffic is
low. However, higher conversion capabilities and lower
number of wavelengths are more suitable if the network
traffic is high.

2) There always exist optimum values of both the conversion
capability and the total number of available wavelengths
that maximizes the throughput for a given network traffic.

3) The blocking probability improves as the burst length
increases.
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