
Neural Networks Based Fractional Pixel Motion Estimation for HEVC

Ehab M. Ibrahim1,3, Emad Badry1, Ahmed M. Abdelsalam2, Ibrahim L. Abdalla3, Mohammed Sayed1,3, Hossam Shalaby1,4
1 ECE Department, Egypt-Japan University for Science and Technology, Alexandria, Egypt

2 Computer and Software Engineering Department, Polytechnique Montreal, Montreal, Canada
3 ECE Department, Zagazig University, Zagazig, Egypt

4 Electrical Engineering Department, Alexandria University, Alexandria, Egypt
{ehab.ibrahim, emad.mahmoud, mohammed.sayed}@ejust.edu.eg,

ahmed.abdelsalam@polymtl.ca, ilotfy@zu.edu.eg, shalaby@ieee.org

Abstract—High Efficiency Video Coding (HEVC) provides
more compression than its predecessors. One of the modules
that contributes to higher compression rates is the Motion
Estimation module, which consists of Integer and Fractional
pixel motion estimation. The Fractional Motion Estimation
(FME) process performs interpolations to find sample values at
fractional-pixel locations, which can be computationally
demanding. In this paper, we propose an interpolation-free
method for FME based on Artificial Neural Networks (ANNs).
Our proposed method is implemented in HEVC reference
software (HM-16.9). According to our results, ANNs can
accomplish FME task with an average increase of 2.6% in BD-
Rate and an average reduction of 0.09 dB in BD-PSNR.

Keywords—Fractional Motion Estimation (FME), High
Efficiency Video Coding (HEVC), Deep Learning, Artificial
Neural Networks (ANNs)

I. INTRODUCTION
High Efficiency Video Coding (HEVC) is a new and

trending video coding standard. It’s a strong candidate to be
a successor for Advanced Video Coding (AVC) standard, as
it provides better compression of up to 50% bitrate reduction
with the same video quality [1]. One of the techniques that
contribute to better video compression is Motion Estimation
(ME), where frames of the video are predicted depending on
past or future reference frames. The ME process is achieved
using two steps: Integer-pixel Motion Estimation (IME) and
Fractional-pixel Motion Estimation (FME).

First, IME predicts the location of the best matched
Prediction Block (PB) in a reference frame with integer-
pixels precision. Second, FME is a refinement of the IME
result that searches for a better match with sub-pixels
precision. The FME block is computationally expensive
since it interpolates the sub-pixels around the selected integer
location of the MV. Additionally, the ME process demands
40-60% of the processing time of the whole HEVC encoder
[2]. Therefore, simpler FME approaches are highly desired.

 Deep Learning [3] have proven successful in lots of
applications. Inspired by the huge success of deep learning,
we propose an interpolation-free Artificial Neural Network
(ANN) approach that performs FME and predicts the
optimum MV with quarter-pixel precision. The ANN is fed
with error values of the best integer location and eight
surrounding integer points, along with the PB size. The
network was trained by a dataset extracted from six well-

known video sequences, using the traditional Stochastic
Gradient Descent (SGD) backpropagation algorithm. Our
results show that ANNs can effectively perform FME task at
the cost of an average increase of 2.6% in BD-Rate and
average reduction of 0.09 in BD-PSNR. It also shows great
promise for optimizations in terms of prediction accuracy
and computational cost.

The rest of the paper is organized as follows: Section II
shows previous efforts to perform interpolation-free FME.
Section III showcases the proposed ANN architecture, and
the techniques used to enhance its performance. The
experimental results are presented in Section IV, and Section
V concludes the paper and presents ideas for future work.

II. RELATED WORKS
Due to the computationally intensive traditional

interpolation method used in standard HEVC, different
approaches have been presented to overcome this huge
complexity. The basic idea is to estimate the optimum
fractional pixel MV by modelling the matching error surface
surrounding the best integer position. Several works use
eight matching error values spaced one pixel from the center,
which can be fitted as 2-D paraboloid surface, then get the
minimum point as the best fractional location. The previous
approaches model the error surface mathematically using any
of 9 terms [4], 6 terms [5], or 3 terms [6]–[8].

The authors of [5] derived the mathematical model terms
from 9 matching error values by solving overdetermined
equations using convex optimization method. In [9], the
fractional MV is estimated by the intersection of the two
main parabolas derived from the parallel horizontal and
vertical planes. The algorithm is then improved by rejecting
the outliers amidst the 9 integer-pixel locations. The
previous results were improved in the work of [10] by
analyzing the error surface and investigating the vertex
direction. In [11], the author evaluates the best fractional
matching MV from among four different directional patterns.
Works of [12] proposes estimating the fractional MV using
25 matching error values, which incur additional overhead in
the case of IME fast search mode, since it does not estimate
the required 25 matching error values.

Authors of [13] proposed performing fractional-pixel
Motion Compensation (MC) using a Convolutional Neural
Network. The difference between our approaches is that in
[13], the interpolation-based ME algorithm is the same as the
standard, and only the MC algorithm is replaced. While in

110

2018 IEEE International Symposium on Multimedia (ISM)

978-1-5386-6857-3/18/$31.00 ©2018 IEEE
DOI 10.1109/ISM.2018.00027

our approach, we replace the ME algorithm with an
interpolation-free ANN that predicts the output MV.

All aforementioned schemes model the error surface
mathematically without considering different video
characteristics. To the best of our knowledge, our work is the
first attempt to utilize deep learning in performing
interpolation-free FME task, and to predict the best fractional
MV without modelling the error surface mathematically.

III. PROPOSED ARCHITECTURE
In this section, we describe the architecture of our

proposed ANN. We justify the design choices we took for
the network’s hyperparameters, as well as the optimization
techniques used to improve both training time and prediction
accuracy. Information about the data used in our network’s
training and validation are also presented.

A. Artificial Neural Network Architecture
At first, we need to define the inputs and expected output

of our network. The inputs are nine matching error values of
integer-pixel locations, plus the height and width of the
assigned PB. We approach the FME problem as a multi-class
classification problem, where the output can only be one of
49 points - the center integer point and surrounding 48 pixel
locations with quarter precision - as shown in Fig. 1. The
most suitable deep learning architecture for that kind of
problem is a Fully Connected (FC) ANN. The network has a
total of 11 inputs, and its output is a Log-Softmax layer with
49 outputs, which predicts the most probable quarter-pixel
location for the given inputs. We trained our network with
the traditional SGD backpropagation algorithm.

Several deep learning optimization techniques have been
employed, such as: a) Dropout [14], b) Batch Normalization
(BN) [15], c) Entity Embeddings [16]. Dropout is the process
of dropping a fraction of the network’s activations at the start
of each training epoch, so as to prevent overfitting. BN
handles normalizing the activations of each layer, and
scaling according to a trainable parameter, which accelerates
the training process. BN also has a slight regularization
effect which contributes in preventing overfitting. Both
dropout and BN are used in all layers of our network.

Entity Embeddings are used to handle the input values of
PB width and height, which can only be one of certain
values. Such inputs are also known as categorical variables.

With Entity Embeddings, each categorical variable gets
replaced with several floating-point numbers (in our case,
four floating-point numbers) that are trainable along with the
network’s weights and biases.

One ANN was trained for each Quantization Parameter
(QP), having a total of four trained ANNs. An illustration of
the architecture is shown in Fig. 2. The training process was
carried out using FastAI library, which is based on PyTorch.

B. Choice of Hyperparameters
FC networks may consist of several hidden layers. We

have experimented with multiple combinations of hidden
layers and found that two layers provided the best trade-off
between prediction accuracy and computational cost. Hence,
only two hidden layers were used for our work. Our layers
consist of 22 and 20 neurons respectively. The choice of the
number of neurons per layer was mostly arbitrary, where we
only considered having a smaller number of neurons on the
second layer to reduce the number of computations.

To find the optimum learning rate, we used the cyclical
learning rate method proposed in [17], where we found it to
be equal to 1x10-3. As a result, we trained our network with
1x10-3 learning rate for 44 epochs. Furthermore, our model
was trained for 6 more epochs with 1x10-4 learning rate to
achieve extra fine-tuning, resulting in a total of 50 training
epochs for each network.

C. Training Data
Our approach when extracting the training data was to

generalize the ANN to work well under all conditions.
Therefore, the data was extracted from six video sequences.
The selected sequences were a mixture of high and low
resolutions, and with fast and slow movements. To balance
the number of error values pulled from each sequence, we
chose a lower number of frames for higher resolution videos,
and vice versa. Table I shows the selected video sequences,
along with the specific frames in each sequence.

Four sets of data were extracted for QP values of {22, 27,
32, 37}, and each set was used to train an independent ANN.
First, each data set was normalized by subtracting the mean
and dividing by the standard deviation of each of the inputs,
resulting in input error values with zero mean and unit

Figure 1. Integer and Fractional pixel locations

Figure 2. Neural Network Illustration

111

variance. The values of mean and standard deviation for each
input were stored for later, to perform normalization of error
values during run-time. Then, for each set, 80% of the data
were used for training, and 20% were used for validation.
The validation set was chosen randomly.

D. Computational Cost
Training process of our network is done offline, and only

the forward pass is executed during video encoding. The
predicted output of the network only depends on the error
values computed by the IME step, hence saving the
complexity of the filters used for interpolation process used
by HEVC standard. Instead, ANNs operate by performing
consecutive multiplications and additions.

Our network, with two hidden layers, requires a total of
1936 additions and 1854 multiplications per prediction. A
breakdown of the used operations is shown in Table II. Data
normalization is the process of subtracting the mean and
dividing by the standard deviation for each input. Linear
layers describe multiplying weights and adding biases for
each layer, and BN is a technique used for accelerating the
training process.

Having four independent networks in our implementation
does not incur any additional overhead in terms of
computational resources. The only overhead is in terms of
memory used to store all four sets of network parameters,
and the slight delay of initializing the parameters depending
on the used QP, which happens only once per video.

It’s worth mentioning that several techniques can be used
to reduce the number of used operations. For example, ANN
pruning can be used to decrease the number of neurons,
resulting in smaller and faster networks. Quantizing trainable
parameters can also be used to reduce multiplication
complexity with only a slight reduction in prediction

accuracy. The implications of pruning and quantization are
yet to be studied and are out of the scope of this paper.

IV. EXPERIMENTAL RESULTS
To evaluate our proposed architecture, we' implemented

it in HEVC standard software (HM-16.9). The QP values are
{22, 27, 32, 37}. The configuration used for our
implementation is “encoder_lowdelay_P_main”, with fast
search algorithm for IME and search range of 64. Finally, the
error criterion used is the Error Sum of Squares (SSE).

Table III shows the computed BD-Rate and BD-PSNR
for our proposed implementation. Our results are compared
with works of [5], [9], [10], which are all interpolation-free
and require only 9 matching error values. We have
implemented the work of [5] and ran it on the same
configuration of our architecture. The algorithms of [9], [10]
have been implemented in the work of [11]. It’s shown that
our proposed network achieves an average increase of 2.6%
in BD-Rate, and an average reduction of 0.09 dB in BD-
PSNR. Compared to [5], our method was able to achieve an
average of 0.7% lower BD-Rate and 0.04 dB higher BD-
PSNR. The BD-PSNR was not reported in the works of [9]
and [10], and only the BD-Rates of classes B, C and D were
reported. For the average BD-Rate of classes B, C, and D,
our proposed network achieved 0.5% lower BD-Rate than
[8] and 0.1% lower BD-Rate than [9].

V. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a new technique for

performing interpolation-free FME, which utilizes deep
learning. The inputs for our ANN are the SSE error values
for the best integer-pixel location and eight surrounding
integer locations, plus the PB height and width. Our network
predicts the best point of 49 fractional locations, including
the best integer location, with quarter-pixel precision.
Results from implementing our method shows an average
increase of 2.6% in BD-Rate, and an average reduction of
0.09 dB in BD-PSNR. Using deep learning in FME shows
promise for reducing computational resources, hence making
it more hardware friendly.

This work can be extended in many ways, the most
obvious being optimizing the ANN for better results, which
is presumably related to finding the optimum training data.
Next, we can research ANN pruning and quantization, and
how would they affect both prediction accuracy and
computational resources. Finally, tailoring the ANN to
specific applications can be studied. For example, the ANN
can be tailored for teleconference applications by simply
changing the training data to reflect its nature. With the rapid
pace of deep learning research, ANNs will only get better at
performing FME.

ACKNOWLEDGMENT
We would like to thank Egypt-Japan University of

Science and Technology (E-JUST) for the continuous
support and the Egyptian Ministry of Higher Education
(MoHE) and National Telecom Regulatory Authority
(NTRA) of Egypt for funding this work.

TABLE II. BREAKDOWN OF COMPUTATIONAL RESOURCES

 Additions Multiplications

Data Normalization 9 9

Linear Layers 1885 1794

Batch Normalization (BN) 42 51

Total 1936 1854

TABLE I. TRAINING DATA EXTRACTION

Class Video Sequence Number of
Frames

Frame
Skip

Class B Kimono 5 60

Class C PartyScene 20 60

Class D BlowingBubbles 30 60

Class E Johnny 10 60

Class F
SlideEditing 10 60

SlideShow 10 60

112

REFERENCES
[1] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of

the high efficiency video coding (HEVC) standard,” IEEE Trans.
Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668, 2012.

[2] F. Bossen, B. Bross, K. Suhring, and D. Flynn, “HEVC complexity
and implementation analysis,” IEEE Trans. Circuits Syst. Video
Technol., vol. 22, no. 12, pp. 1685–1696, 2012.

[3] Y. LeCun, B. Yoshua, and H. Geoffrey, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436–444, 2015.

[4] S. Dikbas, T. Arici, and Y. Altunbasak, “Fast motion estimation with
interpolation-free sub-sample accuracy,” IEEE Trans. Circuits Syst.
Video Technol., vol. 20, no. 7, pp. 1047–1051, 2010.

[5] Y. Li, Z. Liu, X. Ji, and D. Wang, “HEVC fast FME algorithm using
IME RD-costs based error surface fitting scheme,” VCIP 2016 - 30th
Anniv. Vis. Commun. Image Process.

[6] M. S. Sayed, W. Badawy, and G. Jullien, “Interpolation-Free
Fractional-Pixel Motion Estimation Algorithms with Efficient
Hardware Implementation,” J. Signal Process. Syst. Signal Image
Video Technol., vol. 67, no. 2, pp. 139–155, 2012.

[7] E. Badry, A. Shalaby, and M. S. Sayed, “A hardware friendly
fractional-pixel motion estimation algorithm based on adaptive
weighted model,” Proc. Int. Conf. Microelectron. ICM, vol. 2017–
Decem, pp. 1–4, 2018.

[8] M. Sayed, W. Badawy, and G. Jullien, “Low-complexity algorithm
for fractional-pixel motion estimation,” Proc. - Int. Conf. Image
Process. ICIP, pp. 1565–1568, 2009.

[9] W. Dai, O. C. Au, W. Zhu, W. Hu, P. Wan, and J. Li, “A robust
interpolation-free approach for sub-pixel accuracy motion
estimation,” 2013 IEEE Int. Conf. Image Process. ICIP 2013 - Proc.,
pp. 1767–1771, 2013.

[10] X. Zuo and L. Yu, “A novel interpolation-free scheme for fractional
pixel motion estimation,” 2015 Pict. Coding Symp. PCS 2015 - with
2015 Pack. Video Work. PV 2015 - Proc., pp. 80–84, 2015.

[11] R. Fan, Y. Zhang, B. Li, and G. Wang, “Multidirectional parabolic
prediction-based interpolation-free sub-pixel motion estimation,”
Signal Process. Image Commun., vol. 53, pp. 123–134, 2017.

[12] E. Badry, A. Shalaby, and M. S. Sayed, “Fast fractional-pixel motion
estimation using Lagrangian-based error surface interpolation,” 2017
IEEE Glob. Conf. Signal Inf. Process. Glob. 2017 - Proc., vol. 2018–
Janua, pp. 151–155, 2018.

[13] N. Yan, D. Liu, H. Li, B. Li, L. Li, and F. Wu, “Convolutional Neural
Network-Based Fractional-Pixel Motion Compensation,” IEEE Trans.
Circuits Syst. Video Technol., vol. 8215, no. c, pp. 1–1, 2018.

[14] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks
from Overfitting,” J. Mach. Learn. Res., vol. 15, pp. 1929–1958,
2014.

[15] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” Feb. 2015.

[16] C. Guo and F. Berkhahn, “Entity Embeddings of Categorical
Variables,” no. 1, pp. 1–9, 2016.

[17] L. N. Smith, “Cyclical Learning Rates for Training Neural
Networks,” no. April, 2015.

TABLE III. RESULTS OF PROPOSED ARCHITECTURE

 [9] [10] [5] Proposed
BD-Rate (%) BD-Rate (%) BD-Rate (%) BD-PSNR (dB) BD-Rate (%) BD-PSNR (dB)

Class B

BQTerrace 2.1 2.0 4.2 -0.05 4.5 -0.06
BasketballDrive 2.3 2.1 1.8 -0.04 1.9 -0.04

Cactus 2.5 2.2 2.3 -0.05 1.7 -0.03
Kimono 1.2 1.0 0.7 -0.02 1.2 -0.03

ParkScene 2.0 1.8 1.4 -0.04 1.7 -0.05
Average 2.0 1.8 2 -0.04 2.2 -0.04

Class C

BQMall 3.7 3.3 2.9 -0.1 2.6 -0.09
BasketballDrill 3.5 3.1 2.4 -0.09 2.1 -0.07

PartyScene 3.1 2.8 4.4 -0.15 3.0 -0.1
RaceHorses 4.7 4.3 3.6 -0.12 2.9 -0.1

Average 3.7 3.4 3.3 -0.11 2.7 -0.09

Class D

BQSquare 3.0 2.7 8.5 -0.25 6.0 -0.18
BasketballPass 4.4 3.8 3.1 -0.16 2.5 -0.11

BlowingBubbles 3.8 3.5 4.6 -0.14 3 -0.1
RaceHorses 6.7 5.7 4.5 -0.18 3.7 -0.15

Average 4.5 3.9 5.1 -0.18 3.8 -0.14
Averge of Class B,C,D 3.4 3.0 3.5 -0.11 2.9 -0.09

Class E
FourPeople

Not Reported Not Reported
1.6 -0.05 2.0 -0.06

Johnny 2.5 -0.05 3.0 -0.06
KristenAndSara 1.6 -0.04 2.3 -0.06

Average - - 1.9 -0.04 2.5 -0.06

Class F

BasketballDrillText

Not Reported Not Reported

2.8 -0.1 2.4 -0.09
ChinaSpeed 5 -0.23 1.2 -0.05
SlideEditing 3.1 -0.4 1.0 -0.12
SlideShow 6.4 -0.4 3.7 -0.26

Average - - 4.3 -0.28 2.1 -0.13
Total Average - - 3.3 -0.13 2.6 -0.09

113

