
Abstract— In this paper, a new method is proposed to 
analyze the cutoff rate of a variable-bit-rate (VBR) optical 
frequency hopping code division multiple access system (OFFH-
CDMA) using fiber Bragg gratings and direct detection. This 
approach exploits the linear structure of passive optical CDMA 
systems and the nominal time required to accomplish the 
encoding-decoding operations in such systems. A system model 
is presented and analyzed based on a newly introduced bit-
overlap procedure. An expression for the cutoff rate of a VBR 
OFFH-CDMA system is derived. It is shown that for a required 
quality of service (QoS) guarantee, the system’s data rate can be 
increased beyond the nominal limit imposed by the physical 
constraint of the encoder-decoder set. 

I. INTRODUCTION 

UE to the emerging demand for variable and 
hierarchical quality of service (QoS) optical fiber 

communication networks where data must be transferred with 
different transmission speeds, future optical services will 
likely integrate many different streams of traffic. For this 
reason, optical code division multiple access (CDMA) with 
variable-bit-rate (VBR) has received much attention lately 
[1]-[3]. 

It is important to emphasize the difference between 
passive optical CDMA and its electrical active counterpart in 
order to justify our work. In fact, in active CDMA systems 
there is a one-to-one correspondence between the transmitted 
symbol duration and the processing gain (PG) in the sense 
that changing the bit duration will eventually lead to a change 
in the users PG. On the other hand, this one-to-one relation 
does not exists in passive optical CDMA systems. For 
instance, decreasing the bit duration will not affect the 
symbol duration at the output of the optical encoder. 
Therefore, for a fixed PG, increasing the link transmission 
rate beyond a given value, known as the nominal rate, leads 
to bit overlap at the output of the encoder. Based on this 
concept, which is unique to passive optical CDMA, we 
determine the cutoff rate of an optical fast frequency hopping 
CDMA (OFFH-CDMA) system. 

In [6], we have proposed a multirate OFFH-CDMA 
system using fiber Bragg grating and variable PG. The idea 
was to respect the total round trip time for light from a data 
bit to traverse the encoder. Our intention was to guarantee 
the one-to-one correspondence between the PG and the 
source transmission rate. The drawback of this system is the 
drastic decrease in the transmitted signal power especially for 
higher rate users for which the PG becomes very low. The 
solution to this problem is the use of power control [3]. 

On the other hand, Zhang in [1] and [2] introduced a novel 
technique that lead to the generation of a new family of 
Optical Orthogonal Codes (OOC) called the Strict OOC. He 
considered that a VBR could be achieved by varying the time 
delay between the transmitted data symbols. Although the 
Strict OOC ensures both auto- and cross-correlation 
constrains to be less or equal to one, the cutoff rate of the 
system is still limited by the physical constraints of the 
encoder-decoder set in a way the maximum transmission rate 
is achieved when the delay between two data symbols is 
equal to zero. 

In this work, the general problem we consider is by how 
much we can increase the transmission rate beyond the 
nominal permitted one so as to optimize performance to meet 
the QoS requirement, given a fixed PG and number of active 
channels. The maximum achievable bit rate will be notified 
as the cutoff rate of the network. We will show that for an 
optimized family of codes, it is possible to increase the bit 
rate beyond the nominal rate without decreasing the PG as in 
[6] or allowing any time delay between the data symbols as 
proposed in [1]. 

Following the introduction, the paper is organized as 
follows. Section II presents the system model. In section III, 
we quantify the effective increase in the number of hits as a 
function of the transmission rate. An expression of the cutoff 
rate for a VBR OFFH-CDMA system is derived in 
Section IV. Section V contains some numerical results and 
discussions. Finally, the conclusion is presented in 
Section VI. 

II. SYSTEM MODEL 

Consider an OFFH-CDMA communication network that 
supports K users, which share the same optical medium in a 
star architecture [4]. The encoding and decoding are 
achieved passively using a sequence of fiber Bragg gratings. 
The gratings will spectrally and temporally slice an incoming 
broadband pulse into several components equally spaced at 
chip intervals 2c g cT n L c=  [4] as shown in Fig. 1. Lc 

represents the grating length assuming that the grating’s 
temporal response is an ideal square wave function, c is the 
speed of light, and ng is the group index. The chip duration, 
and the number of gratings will establish the nominal bit rate 
of the system, i.e. the round trip time of light, from a given 
transmitted bit, to be totally reflected from the encoder. This 
nominal bit duration in a structure of G gratings is given by 

2n g cT Gn L c= , where G is the PG. The corresponding 

nominal rate is 1n nR T= . 
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Fig. 1 OFFH-CDMA system. 

Due to the linearity of the gratings hence the linearity of 
the encoder-decoder set, when the data rate increases beyond 
Rn, multi-bits will be coded during Tn and transmitted as 
revealed in Fig. 1. At a given receiver the decoder observes 
practically multicode, which are delayed according to the 
transmission rate of the source as shown in Fig. 2. When user 
k transmits using rate Rs > Rn, it introduces a bit overlap 
coefficient sε  according to which the new rate is related to 

nR  through the following equation 
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Fig. 2 Observed codes at the desired receiver for a) the kth channel and b) 
the desired signal. 

Before continuing the analysis, let us impose some 
restrictions which help simplify the mathematical analysis 
and improve the clarity of the problem under consideration. 
We assume 1) a synchronous system and discrete rate 
variation, 2) a single class system, and 3) unit transmission 
power for all the users. 

A. Signal Structure 

We define ( , )ka t f  and ( )kb t  as the hopping pattern and 

the baseband signal, respectively, where t and f represent the 
time and frequency dimensions. From Fig. 2, the optical bit 
stream can be seen to be serial-to-parallel converted to v 
optical pulses. Since the desired user nominal time period is 

n cT GT= , we are interested only in modeling the kth 

interfering channel during nT . Because the bit k
Xb  is delayed 

by ( )X s cX G Tτ ε= − , this suggests that the channel model, 

as seen by the desired receiver, can be represented as a 
tapped delay line with tap spacing of ( )1 s cG Tτ ε− = − −  

from left and ( )1 s cG Tτ ε= −  from right. The tap weight 

coefficients { }0,1k
Xb ∈  depend on whether the transmitted bit 

is zero or one. The truncated tapped delay line model as seen 
by the desired receiver is shown in Fig. 3. Accordingly, the 
transmitted signal is given by 
 ( ) ( ), ,k

k v k v
v

S t f b a t fτ= −∑  (2) 

We define v and vτ  as the index of the tap coefficient and its 

associated time delay, respectively. 
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Fig. 3 Channel model. 

Lemma 1: At the desired receiver end, and during the 
nominal time period Tn, the observed total number of taps in 
channel k, which transmits using rate Rs is 

 ( ), 2 1s
k s

s

N G
G

εε
ε

 
= + − 

 (3) 

where x    is the smallest integer greater than x. 

Proof: For a given transmission rate Rs, which corresponds 
to 0 1s Gε≤ ≤ −  through (1), we can notice that in order for 

a transmitted bit k
Xb  not to correlate with the desired user 

code during nT , the following inequalities must be satisfied 

1) Preceding bits from the right 

 
s

G
X

G ε
≥

−
 (4) 

If we use the fact that we consider discrete chip overlap, the 
smallest integer that satisfies (4) is 
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Thus, we can define the final bit 
r

k
Xb  that correlates with the 

desired decoder from the right as follows 

 1 s
r

s s s

G
X

G G

ε
ε ε

   
= − =   − −   

 

2) Upcoming bits from the left 
The same analysis can be applied for the upcoming bits 

and the total number of the overlapped upcoming bits is 

 s
l r

s

X X
G

ε
ε

 
= =  − 

 

Therefore, the total number of observed transmitted codes is 
equal to Xr plus Xl in addition to the normal bit 0

kb , which 

proves (3).  ¦  
The received signal at the input of the decoder is given by 

 ( ) ( ) ( )
1

0

, ,
r

r

XK
k
v k v

k v X

y t f n t b a t fτ
−

= =−

= + −∑ ∑   

where n(t) is an additive white Gaussian noise (AWGN) with 
two-sided spectral density No/2. 

B. Decoder’s Output 

Without loss of generality, we assume that the 
correlation-matched filter is matched to the zeroth signal. 
The output of the noncoherent matched filter correlator will 
be 

 ( ) ( )
1

0 00
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, ,
n
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k v
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−

=

= + −∑∫   

where N is a zero-mean AWGN with variance 2
0 / 4n nN Tσ = . 

The MAI Ik from user k that transmits data with rate Rs can 
be written as 

 

( ) ( )( )

( ) ( )( )

1

00

0
0

,

,

v

r

r
n

v

k
k v k v

v X

X
T k

v k v
v

I b h a t a t dt

b h a t a t dt

τ

τ

τ

τ

−

=−

=

= −

+ −

∑ ∫

∑∫
 (5) 

∀ 0k ≠ . h(.) is the Hamming function defined in [6]. The 
sequences ( )ka t  and 0 ( )a t  are real numbers representing 

wavelengths used at time t for the kth interferer and the 
desired user, respectively. Notice that ( ) ( )k k sa i a i T= + . In 

addition, we define a new performance parameter called the 
auto-interference, I0, caused by the desired user’s signal as 
shown in Fig. 2b) and it is given by 
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III. SIR PERFORMANCE EVALUATION 

The MAI Ik,  0 1k K∀ ≤ ≤ − , is assumed to be an 
independent random variable. Hence, the variance of the 
decision variable 0Z is 

 [ ]
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1
2 2 2
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var
k

K

I I n
k

Z σ σ σ
−

=

= + +∑  (7) 

2

kIσ  and 
0

2
Iσ  represent the interference power caused by an 

active user k and the auto-interference power, respectively, 
and they are given by 
 2 2 2( ) ( ) 0

kI k kE I E I k Kσ = − ∀ ≤ ≤  (8) 

where E(.) is the expectation operator over all possible 
values of the overlapping bits k

Xb  for { },...,r rX X X∈ −  

assuming that ( ) ( )Pr 1 Pr 0 1/ 2k k
X Xb b= = = = . Using the 

Frequency Shifted Version (FSV) system proposed in [5], 
( )kE I  can be made equal to zero and the cross terms 

generated from squaring the summation in 2( )kE I  become 

zeros, which enable us to write  
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where, ( ),0 ,k i jH τ τ  is the continuous-time partial-period 

Hamming-correlation function given by 
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Using (11) and (12), ( ),k n sR T ε  and ( )0 ,n sR T ε  can be 

written as 
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If we define ( ) ( ) ( )2, , 2k s k n s cR G R T Tε ε= , then we 

substitute into (8), the SIR experienced by any active user 
will be 

 

( ) ( )

2

1
2

0
1

SIR
, ,

K

k s s n
k

G

R G R Gε ε σ
−

=

=
+ +∑

 (15) 

0-7803-7400-2/02/$17.00 (C) 2002 IEEE



A. Effective Increase in the Number of Hits 

Proposition 1: In an OFFH-CDMA system that uses a 
family of codes, which respects the one-coincidence criterion 
and with non repeating frequencies in the same code [7], the 
expected value of the increase in the number of hits caused 
by any active interferer with ( ), sG ε  on a desired user is 

given by 

 ( ) ( ) ( ) 21
,k

H s s r s rI G G X G X
F

ε ε ε = + − −   (17) 

and the effective increase of the number of hits due to the 
auto-interference is 
 ( )0 , 0H sI G ε =  (18) 

where rX  is given throughout Lemma 1 and F is the total 

number of available frequencies. ¦  
Proof: The proof is omitted due to limited space.  

In Fig. 4, we plot the position of hits between two 
Extended Hyperbolic Congruential (EHC) [7] codes with 

40G =  and for two different transmission rates, a) 0sε =  

and b) 35sε = . 
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Fig. 4 Hit positions between two EHC codes for a) 0sε =  and b) 35sε = . 

B. Average SIR 

If we consider the overlapping codes generated from an 
active user as independent virtual users, we can compute the 
average correlations given in (13) and (14) assuming one-
coincidence sequences. The results are as follows 
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Due to the fact that we are assuming one-coincidence 
sequences, the second term in the above expression is 

obviously equal to zero. In addition, ( )2 0,
v

k
j q jh a a−  is a 

Bernoulli random variable with values taken from the set 

{ }1,0  with probabilities ( )v
jP H  and ( )v

jP H , respectively. 

Hence 
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v v

v
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= = = =∑ ∑  (19) 

Following the same analysis, ( )2 ,v vH q G  is given by 

 ( ) ( )1
2 1

,
v

G
s
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=

− −
= =∑  (20) 

If we substitute (19)-(20) into (13) and (14), we obtain 

 ( ) ( )1
, ,

2
k

k s H sR G G F I G
F

ε ε = + ⋅   (21) 

 ( )0 , 0sR G ε =  (22) 

where ( ),k
H sI G ε , is given in (17). Therefore, the average 

SIR for a system with ( ), sG ε  will be 

 ( ) ( ) ( )
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1 1

,
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F

ε σ
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− −
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 (23) 

IV. CUTOFF RATE 

The main objective of this paper is to get a closed form 
solution for the cutoff rate of a VBR OFFH-CDMA system 
given K, G, and the QoS guarantee β . The method consists 

of solving for sε  using (23). The problem is divided into two 

steps. The first one is when we consider that the required 
QoS allows the transmission rate to be 2n s nR R R≤ ≤ . In the 

second step we assume that the QoS requirement is small 
enough to allow 2 n s nR R GR< ≤ . Thus, the critical value of 

sε  that separates the two cases is / 2threshold Gε =  for which 

we can compute the threshold SIR as follows 
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G
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β
σ

=
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Note that F must fulfill  
 ( )1 2F K Gβ≥ −  (24) 

otherwise no overlap is allowed. 
1) thresholdβ β≥  

In this case sε  must satisfy 0 / 2s Gε≤ ≤ ; therefore 

1rX = . In order to respect the QoS guarantee, the computed 

SIR for each user must respect SIR β≥ . Thus we can write 

the following inequality 

 ( ) ( )
2

21 1

2
s

n

G
K G K

F F

β
ε

σ
≥

− −
+ +

 

By taking the equality and solving for sε , we obtain the 

cutoff rate as follows 

 
( ) ( )

22

1 2 1
n

cutoff threshold

FFG G

K K

σε β β
β

= − − ∀ ≥
− −

 (25) 

2) thresholdβ β<  

For this situation sε  must fulfill / 2 sG Gε< < . The 

problem seems to be more complicated due the integer 
problem represented by rX . 
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Proposition 2: For any / 2 sG Gε< < , as sε  tends 

toward G , the SIR expression given in (23) converges to 

 
( ) ( ) ( )

2

2

SIR
1 1

2 2
s

n
s

G
GG

K K
F G F

ε σ
ε

=
− + − +

−

 (26) 

Proof: If / 2 sG Gε< < , the integer value Xr is lower 

bounded by _ minr s sX Gε ε= −  and upper bounded by 

_ maxr sX G G ε= − . Using some simple algebra, it can be 

easily shown that 

 ( ) ( ) ( )_ max _ min
k k s
H r r H r r

s

G
I X X I X X

G F

ε
ε

= = = =
−

 

Knowing that k
HI  is a second order equation in rX , the 

maximum of k
HI  occurs at the extreme 

( ) ( )_ 2r extreme s sX G Gε ε= + −  for which we can write 
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Thus, the exact value of rX  is either bounded by 

_ min _r r r extremeX X X≤ ≤  or _ _ maxr extreme r rX X X≤ ≤ . 

Therefore, in the two cases, k
HI  is bounded by 
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We define the relative measure of the tightness between the 
upper and lower bound of k

HI  as 

 ( ) ( )2

_ max _ min

_ min

,
4

k k
H H s

s k
sH

I I G
G

GI

ε
ε

ε
− −

∆ = =  

We can notice clearly that ( )lim , 0
s

s
G

G
ε

ε
→
∆ = , which makes 

the two bounds converges asymptotically to the same value 
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k s
H

s

G
I

G F

ε
ε
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−

 

Using this result in (23), we obtain (26). ¦  
In Fig. 5, we plot k

HI  versus sε . For 2s Gε > , and as sε  

increases, the bounds are very tight. In addition, it is clear 
that as F increases, k

HI  decreases; therefore, enabling higher 

transmission rate for the network. 
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Fig. 5 Effective increase in the number of hits versus the overlapping 
coefficient and for different value of F. 

Hence, using the lower bound of rX  and assuming that 
2 0nσ = , we obtain an upper bound of sε  as follows 
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Therefore, the upper bound of sε  is 
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β
ε

− −
=  (27) 

On the other hand, a lower bound of the cutoff rate can be 
derived by using r extremeX

−
. Hence we can write 
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lowerε  is obtained by solving the following second order 

equation in sε  

 
( ) ( )( )

( )( )
2 2

2 3

1 8 2 1

                 2 1 8 0

s sK FG K G

K G FG

βε β ε

β

− + − −

+ − − =
 (28) 

Note that the condition in (24) insures the existence of a 
valid solution for (28), which is given by 

 
( )

( )

22 2 2 24 2 4 1

1lower

FG G F G K
G

K

β
ε

β
− + − −

= +
−

 (29) 

Thus, the cutoff rate of the system is given by 
 lower cutoff upper thresholdε ε ε β β≤ ≤ ∀ <  (30) 

It is important to note that (30) represents the bottleneck of 
the transmission rate for a single class OFFH-CDMA system. 
Asymptotically, As F increases, it is easily seen that 
lim cutoff
F

Gε
→∞

= . Hence, the system allows full overlap. 
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V. NUMERICAL RESULTS AND DISCUSSIONS 

In comparison to previous works [1]-[6], an important 
contribution of this paper lies in exploiting the linear 
structure and the physical constraints of passive optical 
CDMA. 

It can be seen from Fig. 6 the importance of the QoS 
requirement in determining cutoffε  of the system. Observe that 

for 100β >  and assuming 40F =  and 30K = , the system 

does not allow any increase in the transmission rate beyond 

nR . On the other hand, when 60β < , the system may allow 

more than 2 nR . Note also the importance of F  in 

determining cutoffε . cutoffε  increases asymptotically as F  

becomes very high, which is in total agreement with the 
analytical results discussed in Section IV. 
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Fig. 6 Cutoff overlapping coefficient versus the QoS requirements, and for 
different value of F. 
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Fig. 7 SIR versus F and sε . 

In Fig. 7 we plot the SIR as a function of F and sε , for 

K = 30. Notice that as F increases beyond G = 40, the 

system’s SIR increases also due to the decrease in the 
probability of hit. If we assume that 20β = dB, we can 

determine cutoffε  of the system function of F as shown by the 

intersection line between the plane and the SIR surface. 
Observe the asymptotic behavior of sε  as F becomes very 

high. It is clear that if we keep on increasing F, cutoffε  will 

eventually reach G. 

VI. CONCLUSION 

In this work, the main idea from our derivations is to find 
and analyze the cutoff rate for a VBR OFFH-CDMA system. 
By taking into account the virtual users induced by an 
interfering channel and the desired source, the system’s SIR 
was derived. Based on this SIR, we have been able to obtain 
a closed form solution for the cutoff rate of a single class 
system. Simulation and analytical results showed that for 
given QoS requirements, number of available frequencies, 
and number of active channels, it is possible to increase the 
transmission rate well beyond the nominal rate imposed by 
the physical dimensions of the encoder/decoder pairs. 
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