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Abstract— A performance analysis of a core node in an OBS 
network having wavelength converters in the node resources is 
presented. The analysis assumes that the wavelength converters 
are deployed at the input ports of the node such that the node 
may have variable wavelength conversion capability. This means 
that the node may have no, partial or full conversion capability. 
The no and partial wavelength conversion is imitated by 
modeling each output port in the node as an M/M/w/w queue with 
limited server accessibility. Two performance measures are 
derived from the model; namely, the steady state throughput and 
the average burst loss probability assuming Poisson traffic 
arrivals. In addition, a simulation work is performed in order to 
validate the results of our proposed model. After taking into 
consideration the cost of the wavelength converters, optimum 
values for the wavelength conversion capability in the node, 
which lead to minimum burst loss probability, are reached for 
different traffic conditions. 

Keywords-component; Optical Burst Switching (OBS); Optical 
Circuit Switching (OCS); Optical Packet Switching (OPS); Just-In-
Time (JIT); Just-Enough-Time (JET); Equilibrium Point Analysis 
(EPA) . 

I.  INTRODUCTION 
Optical Burst Switching (OBS) is a new switching 

paradigm that can support bursty traffic introduced by upper 
layer protocols or high end user applications. OBS can be 
considered as the gate through which the envisaged realm of 
all-optical internet will be realized by implementing IP 
software directly over WDM optical layer (IP/WDM). The 
idea of burst switching, first proposed by researchers in [1] 
and [2], emerges to combine the best of both OCS and OPS. 
The burst is the basic switching unit in OBS networks. The 
variability in the burst length from being as short as a packet 
to being as long as a session puts OBS as an intermediate 
solution between OCS and OPS. 

The OBS network architecture; as fully illustrated in [4], 
simply comprises of three parts; the ingress nodes, the core 
network and the egress nodes. The ingress node is the node at 
which the aggregation process of packets takes place to form a 
burst, which is considered the basic switching unit in the OBS 
network. The core network is the part that contains the 
intermediate nodes (core nodes) that have the function of 
forwarding the burst along a certain route until reaching its 
destination egress node. At the egress node, the burst is 

disassembled back into packets each of them to go to its own 
destination. It should be noted that the ingress and egress nodes 
in this connection can perform as core nodes in another 
connection setup, i.e. the functions are assigned logically. 

Generally, the main idea beyond all OBS protocols is the 
separation between the data and control planes. Thus, the 
control packet (header) will be on a separate channel, called the 
control channel, while the data burst (payload) is sent on one of 
the data channels. The key concept in OBS is that each control 
packet is sent by the ingress node prior to its corresponding 
data burst by an offset time sufficient enough to eliminate the 
need of optical buffers in the subsequent core nodes. 

Considering the reservation protocols proposed for OBS 
networks in previous literature, the two most common are Just-
In-Time reservation protocol (JIT) [5], [6] and Just-Enough-
Time reservation protocol (JET) [1], [2]. Both are one-way 
reservation protocols where the control packet carries 
information about the upcoming burst. Briefly, the control 
packet is sent prior to the data burst by some offset time to 
reserve appropriate resources, if available, after the processing 
of the control packet at the core node and configure the 
switching fabric to route the upcoming data burst to the 
destined output port.  

The two main differences between JET and JIT are the time 
of reservation and the release mechanism of the resources. In 
JIT, the reservation of the core node resources is done 
immediately after the processing of the control packet, while 
the release of the core node resources is performed explicitly 
using a release packet sent on the control channel. On the other 
hand, the control packet in JET contains information about the 
time of arrival of the data burst to the node, so the resource 
reservation can be made immediately prior to the burst arrival, 
i.e. delayed reservation. The control packet also contains 
information about the burst length, so the release is performed 
implicitly when the burst departs the node. To make the 
proposed model valid to be used for both JIT and JET 
protocols, it is obligatory to compensate for the difference 
between the two reservation schemes applied in both protocols. 
This difference can be modeled as an artificial increase in the 
burst length in the case of the JIT protocol whereas no increase 
is introduced to the actual burst length in the case of JET 
protocol. 
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