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ABSTRACT 
 

       Nowadays, a huge data traffic requires a high-speed processing, so the use of optical memories is a logical solution 
for high speed data processing. In this paper, a large-scale parallel integration of wavelength addressable optical bit 
memories is presented based on three photonic crystal nanocavities (C1, C2, and C3) filled with liquid crystal.  Each 
cavity is storing two different wavelengths, where each wavelength is representing a single bit. We have calculated Q 
factors in basing and unbiasing states for C1, C2, and C3. Also, the group velocities across the storage cell have been 
measured in the biased and unbiased cases for all cavities to confirm the storage and confinement. The maximum 
consumed power for six bits optical memory is only 13 nW.   

Keywords: Memory, optical RAM, liquid crystal 

1. INTRODUCTION 

Nowadays many applications require high-speed data processing which can be achieved by using parallel processing 
computing cores. Unfortunately, the electronic memories and storage do not undergo similar advances and are having 
drawbacks of bandwidth limitation and long access time. This is imposing major limitation on further enhancing 
processing capabilities, which is commonly known as Memory Wall [1,2]. This is mainly due to the physical state of 
electron and transistor technology. Therefore, the optical processing is a logical alternative solution due to its 
advantage of high-speed transmission.  

The photonic integration has been under research for last decade, but the integration level is very limited when 
compared to that of electronics. The limitation for large-scale integration is mainly due to their large footprint and high 
consumption power. However, the need for large-scale photonic integration has been highly demanding for the optical 
processing applications. In the quest for designing and optimizing optical memories, many trails have started in various 
forms starting from ring lasers disks targeting the design of flip-flops [1-3] to the design of cavities with high-quality 
factors (Qf) [4,5]. 

The main issues for large scale memory integration are power consumption of single cell, bit representation, and 
footprint. Many researchers have investigated these issues for optimization. Notomi et.al have adapted the ideas of 
optimizing the micro/nano cavities for ultra-low power all optical RAM in full scale integration [4,5]. Nozaki et al. have 
demonstrated the design of optical random access memory (O-RAM) based on 2D Indium phosphide (InP) photonic 
crystal (PhC) cavity with a buried membrane of Indium gallium arsenide phosphide (InGaAsP) with power consumption 
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of 30 nWb-1, switching energy 2.5 fJ with high switching speed (ON: 44 ps , OFF: 7 ns) and storage area  of  10 µm2 for a 
single bit [4]. The cavity design was based on the waveguide modulation by shifting three rows of air holes in the y-axis 
direction. The operation of O-RAM was depending on the nonlinearity of materials. The reading, writing, and resting 
operations are controlled by increasing or decreasing the biased power. The area of the design has been optimized for 
the single bit state but in case of large scale integration it demands a large area as the distance between each bit cell is 
50 µm in 4 bits parallel integration and the power consumption is near 1 µW. 

As an alternative solution for integrability, Kuramocha et al. [5] have demonstrated the capabilities of wavelength 
addressable O-RAM on a photonic crystal chip. The design concept is to modulate and assign each bit to specific 
wavelength with 0.9 nm spacing to be stored in series of serial nano-cavities. For storing 28 bits, they have optimized 
and fabricated 28 cavities with a separation distance of 8.4 µm to have total length of 286 µm with total power 
consumption of 137 µW. The reported power consumption for single bit is 4.8 µWb-1. 

All previous works were depending on the nonlinearity of InP and InGaAsP materials that always fed by optical biasing 
power for optical operation. The bit representation of binary operation (0s and 1s) were depending on ON and OFF 
light pulse. As for reading and writing operation for optical memory it was operating by a slight increase or decrease of 
biasing power fed to optical memory that change Qf of nanocavity.  The most common drawback of all previous 
memories is the biasing power which leads to high power consumption and lowering dynamicity of switch rate 
between ON and OFF state in reading and writing process.  

In this work, we present a low power parallel integration of wavelength addressable optical bit memories using 
combination between Photonic crystal and liquid crystal. The proposed memory consists of three photonic crystal 
(PhC) nanocavities etched in indium phosphide (InP) substrate and filled with 5CB liquid crystal allowing two-bit 
storage for single cell, where each bit is represented by different wavelength. The proposed design has some 
advantages over those reported previously in literature [1-5] in terms of in size, operating power, and number of 
stored bits: 

• The design of optical memory footprint is one third of that of designs mentioned in [4,5]. 
• The maximum consumed power for six bits optical memory is only 13 nW which is less than that proposed in 

[1-5].   
• The proposed optical memory can store six bits on three bits memory footprint. 

The proposed design is numerically simulated and analyzed using finite difference time domain (FDTD) [6].  

The paper is organized as follows. Following this introduction, a detailed description of the proposed memory and 
numerical methods will follow in section 2. Section 3 presents the simulation results of the design stages of the 
memory. Finally, the conclusion of the paper will be presented. 

2. DESIGN AND NUMERICAL METHODS 

The Photonic crystals have attracted much attentions in various fields such as polarizers [7,8], filters [9], and sensors 
[10-18].  The proposed design cell is based on 2D photonic crystal etched in InP substrate of size 30.6 µm × 14 µm. The 
use of InP is inspired from previous work [4,5], where it supports low consumed power device rather than silicon 
substrate. The design for the 6-bit storage cell consists of two main parts which are three cavities (C1, C2 and C3) and 
demultiplexer.  

The demultiplexer is for the separation of the modulated bits and sending each bit to its storage cell. It is designed by 
introducing shifted branches of Y- splitter as shown in Fig. 1 where this shift breaks the wavelength symmetry for each 
branch. As for storage cells, they consist of square holes filled with 5CB liquid crystal of size 850 × 850 nm, three 
surrounding layers surrounding holes and line 1D PhC.  

The Liquid crystals (LCs) are defined as fluids where their electrical permittivity tensor (εr) is highly depending on the 
orientation of their molecules and that it is why it attracts many research for various devices such as storage 
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devices[19], fibers [20-24], multiplexers [25-28], sensors [29,30], logic gates [31] and routers [32,33].  Equation 1 
describe relation between εr and the molecule orientation [19-33]: 
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where φ is the rotation angle of the director of the LC with respect to y-axis. 

 

Fig.1. A sematic diagram of proposed design. 

The proposed design is simulated using FDTD [6] with simulation window of length equals 33.5 µm and having a width 
of 14.6 µm which is discretized using an auto non-uniform meshing of minimum mesh step of 0.025 nm. The 
computational window has been surrounded by the perfect matched layer (PML) boundary conditions [6]. The 
proposed design is injected with the fundamental mode pulse having wavelength range from 1.4 µm to 1.6 µm in 
direction of positive x -axis perpendicular to y normal plane.  

The Qf is calculated in both biased state and unbiased state using Q analysis of Lumerical having the expression of [6]: 

                                                                        =  ( )                                                                        (2) 
where m is the slope of the log of the time signal envelope and fr is the resonant frequency of the mode.  

The Qf is calculated in both biased state and unbiased state using Eq.2. The biased cases is the case when LC is exposed 
to electric field; The LC director starts to align parallel to the electric field lines so its rotational angle (φ) changes with 
the changing of the value of the electric field and this affects the relative permittivity tensor which is responsible for 
high switching between two bits.   
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3. SIMULATION RESULTS 

The design concept is to change geometry of nanocavities in order to have high Qf [34-41], with different resonating 
wavelengths in the presence of liquid crystal. Accordingly, we design PhC cavity to ensure the presence of soft 
confinement which is a key to achieve a high Qf. We use a combination of perfect circular and elliptical holes along the 
coupling waveguide and surrounding holes around LC. The design of storage cell consists of square etching filled with 
5CB liquid crystal, two layers surrounding holes and line 1D PhC.  

The design cell is based on 2D photonic crystal of air holes having radii r = 135 nm with lattice constant in direction of x 
axis (ax) equals 425 nm and lattice constant in y axis (ay) equals 368 nm are etched in InP slab resulting in having a band 
gap of 370 nm centered at 1600 nm as shown in Fig 2.   

 
Fig.2 The proposed PhC bandgap with a = 425 nm and r = 135 nm. 

We first optimize the dimension of 1D PhC for the single stored cell then start to optimize the other cell elements in 
the three cavities design.  The first design step for storage cell is 1D cavity. The importance of 1D cavity is to ensure 
two basic functions which are the soft confinement inside the LC cell and to ease the coupling between the waveguide 
and storage cell [41]. As shown in Fig. 3(a), the air holes have lattice constant (ax) of 425 nm with radii of and  
along y-axis and x-axis respectively. The air hole geometrical parameters are optimized in order to achieve highest Qf in 
biased case of LC and nearly half its value in unbiased case. The radii that apply the optimizing condition is 0.25 ax and 
0.4 ay to have Qf of 80000 and 56400 for biased and unbiased case respectively as in Fig. 3(b) and Fig. 3(c). The Qf 
increased more than six times than that in absence 1D PhC owing to the presences of elliptical holes that increase the 
group index of the design this is due to the sharp changing in refractive index of minor axis of elliptical holes [41]. 

Based on the Qf calculation in the 1D PhC cavity that the shape alteration from the regular circle to ellipse offers a 
great structural freedom to tune the optical properties of the nanocavities [41] and increase the Qf . In this stage, we 
focus on the upper and lower holes that indicated in Fig. 4.a. by the yellow ellipse holes to study the relationship 
between the Qf and radii variation in presence of slight shift in their center positions towards the LC by 4.25 nm and 
3.68 nm in x-axis and y-axis respectively. In terms of optimizing the geometry of cavity, the radii in x-axis ( ) and y-axis 
( ) changes from zero to half value of ay and ax as shown in Fig. 4.b and 4.c for both biasing cases. The maximum Qf is 
at radii  and  having values of 0.3 ay and 0.45 ax respectively. The Qf in the biased case is equal to 121500 and in 
unbiased case equals to 74500. 
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(a)                                                                                (b)                                                                       (c) 

Fig.5. (a) A schematic diagram of the proposed design with variation of second row radii ( ) indicating to yellow 
holes, (b) Quality factor variation due to variation of   in biasing and unbiasing states, and (c) Quality factor 

spectrum of the cavities in biasing and unbiasing states. 

                   (a)                                                                               (b)                                                                                (c) 

Fig.6. (a) The sematic diagram of the proposed design with variation of third row radii ( ) indicating to yellow holes, 
(b) The quality factor variation due to variation of in biasing and unbiasing states, and (c) The quality factor spectrum 

of the cavities in biasing and unbiasing states. 
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Fig.7. (a) Schematic diagram of proposed design with variation of  LC1 y span and  (b) quality factor variation due to 
variation of LC1 y span in biasing and unbiasing state. 

Another indication for optical trapping is the group velocities across the storage cell. Table 4 shows the calculated 
group velocities in the biased and unbiased cases for C1, C2, and C3 and normalized to light velocity (Vg/C).  

      Table 4. The normalized group velocity for each cavity in biasing and unbiasing state: 

Biasing 
state 

Vg1/C Vg3/C Vg3/C 

Biased -4×10-4 -1.9×10-4 -2×10-4

Unbiased -5.5×10-4 -4.2×10-4 -3.4×10-4

 

The negative values can be explained as the transmitted pulse is slowing down and compressed while it propagates 
along waveguide then coupled inside the cavity and stopped for time frames. The pulse begins to propagate backward 
after stopping for a while instead of being trapped forever inside the cavity [42]. The small value of the group velocity 
is owing to the changing and modulating of the surrounding holes resulting in increasing the group index of the cavity 
to be higher than the average index of liquid crystal [43]. 

The electric field distribution also confirms the confinement inside the cavities for resonating wavelengths in biasing 
state and unbiasing states. The field distribution is calculated for C1, C2, and C3 at wavelengths 1.528 µm, 1.493, and 
1.484 respectively. Also, it is calculated for the unbiasing state for C1, C2, and C3 at wavelengths 1.507 µm, 1.494, and 
1.497 respectively. The field distribution reveals a field confinement within the boundaries of cavities for both biasing 
cases. In addition, the optical confinement becomes more gradually around the holes, while the electric field 
distribution decays abruptly outside the holes. This reveals that the stored field inside the cavity in biasing state is 
double that in unbiasing state as shown in Fig. 8. 

One of the most important parameters for estimating the proposed RAM performance is the power calculation. The 
consumed power in all literature design were more than 3 µWb-1 , while the proposed design have maximum 
estimated power of 13 nW for storing 6 bits. 
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