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Abstract

Human action recognition from videos is a chal-
lenging machine vision task with multiple im-
portant application domains, such as human-
robot/machine interaction, interactive entertain-
ment, multimedia information retrieval, and
surveillance. In this paper, we present a novel ap-
proach to human action recognition from 3D skele-
ton sequences extracted from depth data. We use
the covariance matrix for skeleton joint locations
over time as a discriminative descriptor for a se-
quence. To encode the relationship between joint
movement and time, we deploy multiple covari-
ance matrices over sub-sequences in a hierarchical
fashion. The descriptor has a fixed length that is
independent from the length of the described se-
quence. Our experiments show that using the co-
variance descriptor with an off-the-shelf classifica-
tion algorithm outperforms the state of the art in ac-
tion recognition on multiple datasets, captured ei-
ther via a Kinect-type sensor or a sophisticated mo-
tion capture system. We also include an evaluation
on a novel large dataset using our own annotation.

1 Introduction
Human action recognition is one of the many challenging
problems targeted by machine vision researchers. It has many
important applications in different domains. One of the most
active such domains at the moment is interactive entertain-
ment. A hive of activity around this domain was recently
stimulated by the popularity of several gaming consoles with
touch-less interfaces. For truly touch-less interface experi-
ence, a gaming console, such as Microsoft’s XBox, deploys
a low-cost depth sensor – the Kinect sensor. The depth data
captured through the sensor can then be analyzed to estimate
the player’s body skeleton in real time [Shotton et al., 2011a],
which can further be analyzed to recognize his/her action or
gesture. It was conjectured that using skeleton data alone for
action recognition can perform better than using other low
level image data [Yao et al., 2011]. We already know that the
approach works quite well in recognizing simple user ges-
tures in gaming consoles. Nevertheless, the extent of success

Figure 1: Construction of the covariance of 3D joints de-
scriptor. A sequence of 3D joint locations of T = 8 frames
is shown at the top for the “Start System” gesture from the
MSRC-12 dataset. For the ith frame, the vector of joint coor-
dinates, S(i) is formed. The sample covariance matrix is then
computed from these vectors.

we can achieve with it and its utility in non-entertainment ap-
plications are not fully explored yet.

In this paper, we address the problem of representing a se-
quence of skeletal joint motions over time in a compact and
efficient way that is highly discriminative for human action
recognition. Particularly, we introduce a novel descriptor for
human action recognition that is based on covariance matri-
ces. As shown in Figure 1, the descriptor is constructed by
computing the covariance matrix on the coordinates of body
skeleton joints, sampled over time. To encode the tempo-
ral dependency of joint locations, we use multiple covariance
matrices, each covering a sub-sequence of the input sequence,
in a hierarchical fashion. We experimentally evaluated the
descriptor on the task of human action recognition. We used
multiple (recent and new) datasets of varying sizes and na-
tures. In these experiments, classification using our descrip-
tor either outperforms the state of the art or is the first to be
reported. The benefit of the temporal hierarchy of descriptors
becomes also evident from our experiments.

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

2466



The paper is organized as follows: The remainder of this
section summarizes the related work. In Section 2, we give
background on the covariance descriptor. In Section 3, we
explain the proposed Covariance of 3D Joints (Cov3DJ) de-
scriptor, its different configurations, and efficient computa-
tions. Next, in Section 4, we present our experimental evalu-
ation. Finally, we conclude the paper in Section 5.

1.1 Related Work
In human action recognition, there are three main challenges
to be addressed: data capture, feature descriptors, and action
modeling. In this section, we briefly summarize the literature
associated with each challenge.

The first challenge is the availability and the quality of the
captured data. Accurate skeleton data, captured using motion
capture systems, such as the CMU MoCap database1, and the
HDM05 dataset [Müller et al., 2007], are expensive to ac-
quire. On the other hand, the Microsoft Kinect, and other low
cost depth sensors, make the data acquisition affordable, with
a loss of accuracy that is still acceptable for some applica-
tions. In addition to the depth maps produced by these sen-
sors, the positions of skeletal joints can be estimated [Shotton
et al., 2011b]. Due to the low cost and widespread of such
sensors, several skeletal datasets have been recently released
[Li et al., 2010; Fothergill et al., 2012].

The second challenge in human action recognition is to find
reliable and discriminative feature descriptions for action se-
quences. There are three common types of action descrip-
tors: whole sequence, individual frames , and interest points
descriptors. The latter two descriptors need additional steps
of descriptor aggregation and temporal modeling in order to
achieve the recognition goal.

An example of the methods that find a description of the
whole sequence is the moments of Motion History Images
[Bobick and Davis, 2001; Davis, 2001]. Examples of other
methods that find a description for every image in a sequence,
and defer the step of learning the dynamics, are the recent
works of [Wang et al., 2012b; Xia et al., 2012]. In [Wang
et al., 2012b], a descriptor of relative positions between pairs
of skeletal joints is constructed. The temporal modeling is
done in the frequency domain via Fourier Temporal Pyra-
mids. In [Xia et al., 2012], a histogram of 3D joints descrip-
tor in a frame is computed, a dictionary is built and the tem-
poral modeling is done via HMM. Examples of methods that
use interest point features is the spatio-temporal interest point
features STIP [Laptev and Lindeberg, 2003]. However, local
descriptors with depth data lack in its discrimination power
due to the lack of texture in depth images. The work pre-
sented in [Gowayyed et al., 2013], which uses histograms of
displacement orientations, is the closest in spirit to the work
presented in this paper.

The third challenge is modeling the dynamics of an ac-
tion. Sequence analysis via generative models, such as
HMMs [Xia et al., 2012], or discriminative models, such
as CRFs [Han et al., 2010], are usually employed. In such
methods, the joint positions or histograms of the joints po-
sitions are used as observations. Other recent approaches

1http://mocap.cs.cmu.edu/

use recurrent neural networks [Martens and Sutskever, 2011],
or Conditional Restricted Boltzman Machines [Mnih et al.,
2011]. Due to the large number of parameters to be estimated,
these models need large amounts of data samples and training
epochs to accurately estimate its model parameters.

2 The Covariance Descriptor
The covariance matrix for a set of N random variables is an
N × N matrix whose elements are the covariance between
every pair of variables. Let X be a vector of N random vari-
ables. The covariance matrix of the random vector X is de-
fined as COV(X) = E[(X−E(X))(X−E(X))′], where E() is
the expectation operator. The covariance matrix encodes in-
formation about the shape of the joint probability distribution
of the set of random variables.

The covariance matrix was first introduced as a descrip-
tor by Tuzel, et al. [2006]. In this work, the descriptor was
used to describe a region of an image, where variables cor-
responded to different feature maps computed for the region,
and samples of each variable corresponded to values of its
feature map at different pixels in the region. The descriptor
was applied successfully on object detection, texture classifi-
cation, and pedestrian detection [Tuzel et al., 2008].

Recently, the same idea was generalized to video se-
quences by considering features of pixels in a volumetric
spatio-temporal patch, and was applied to action recognition
[Sanin et al., 2013]. In this paper, we take a different ap-
proach inspired by the findings of [Yao et al., 2011], in which
pose data was found to outperform low-level appearance fea-
tures in action recognition. Particularly, we use the pose data,
represented by the body joint locations, sampled over time,
as the variables on which the covariance matrix is computed.

3 The Covariance of 3D Joints (Cov3DJ)
Descriptor

Suppose that the body is represented by K joints, and the
action is performed over T frames. Let x(t)

i , y(t)i , and z
(t)
i

be the x, y, and z coordinates of the ith joint at frame
t. Let S be the vector of all joint locations, that is S =
[x1, ..., xK , y1, ..., yK , z1, ..., zK ]′, which has N = 3K el-
ements. Then, the covariance descriptor for the sequence is
COV(S). Typically, the probability distribution of S is not
known and we use the sample covariance instead, which is
given by the equation

C(S) =
1

T − 1

T∑
t=1

(S− S̄)(S− S̄)′ , (1)

where S̄ is the sample mean of S, and the ′ is the transpose
operator.

The sample covariance matrix 2, C(S), is a symmetric N×
N matrix. For the descriptor, we only use its upper triangle.
For example, for a skeleton with 20 joints, such as the one
produced by the Kinect sensor (examples are in Figure 1),
N = 3 × 20 = 60. The upper triangle of the covariance
matrix in this case is N(N + 1)/2 = 1830, which is the
length of the descriptor.

2Referred to just as ’covariance matrix’ for the rest of the paper.
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Figure 2: Temporal construction of the covariance descriptor.
Cli is the ith covariance matrix in the lth level of the hierar-
chy. A covariance matrix at the lth level covers T

2l
frames of

the sequence, where T is the length of the entire sequence.

3.1 Temporal Hierarchical Construction
The Cov3DJ descriptor captures the dependence of locations
of different joints on one another during the performance of
an action. However, it does not capture the order of motion
in time. Therefore, if the frames of a given sequence are ran-
domly shuffled, the covariance matrix will not change. This
could be problematic, for example, when two activities are
the reverse temporal order of one another, e.g. “push” and
“pull”.

To add the temporal information to Cov3DJ, we use a hi-
erarchy of Cov3DJs, which is inspired by the idea of spatial
pyramid matching [Lazebnik et al., 2006] in 2D images. The
hierarchical construction is shown in Figure 2. The top level
Cov3DJ is computed over the entire video sequence. The
lower levels are computed over smaller windows, overlap-
ping or non-overlapping, of the entire sequence. Figure 2
shows only two levels in the hierarchy. Each covariance ma-
trix is identified by two indices: the first is the hierarchy level
index, and the second is the index within the level. The top
level matrix covers the entire sequence and is denoted by C00.
A covariance matrix at level l is computed over T/2l frames
of the sequence. The step from one window to the next is ei-
ther the length of the window or half of it. If the step is half
the window length, the windows overlap with one another. In
Figure 2, covariance matrices in the second level overlap.

As we show in Section 4 adding more levels and allow-
ing overlap enhances the ability of a classifier to distinguish
among actions using the descriptor. However, the more lay-
ers we add and allowing overlap increases the length of the
descriptor. For the descriptor configurations in Figure 2, a
skeleton represented with 20 joints results in a descriptor of
length 4× 1830 = 7320.

Fast Descriptor Construction
Creating multiple layers of the temporal hierarchy and allow-
ing overlap dictates computing multiple covariance matrices
for sub-sequences of the same sequence. Luckily, a dynamic
programming approach can be deployed to make the the com-
putation of every element of the matrix possible in constant
time, after some pre-computations are performed. A simi-
lar idea was used in prior work with the names integral im-
ages for covariances on image patches [Tuzel et al., 2008],
and integral videos for covariances on spatio-temporal video

patches [Sanin et al., 2013]. The same concept can be applied
in our case with the distinction that integrals are needed only
on the time dimension, which we refer to as integral signals.

Following similar notation to [Tuzel et al., 2008], we de-
fine the two integral signals P(t) and Q(t) as

P(t) =
t∑

i=1

S(i), Q(t) =
t∑

i=1

S(i)S(i)′ . (2)

After some algebraic manipulation, we can reach the follow-
ing formula for computing the covariance matrix of the range
of frames from t1 + 1 to t2, inclusively.

C(t1,t2)(S) =
1

M − 1
(Q(t1,t2) − 1

M
P(t1,t2)P(t1,t2)

′
) , (3)

where M = t2 − t1, Q(t1,t2) = Q(t2) −Q(t1), and P(t1,t2) =
P(t2) − P(t1). Details of the derivation are a straight forward
simplification of the corresponding 2D version in [Tuzel et
al., 2008]. Having computed the signal integrals, P and Q, we
can compute the covariance matrix over any range of frames
in time that is independent of the length of the range, using
Equation 3.

It is worth noting here that integrating over one dimen-
sion only in integral signals, compared to integration over two
and three dimensions in integral images and integral videos,
respectively, is not just a simplification of mathematics and
computational demands. It also leads to significantly less er-
ror accumulation on computing the integrals [Hussein et al.,
2008].

4 Experiments
We evaluated the discrimination power of our descriptor for
action recognition. We performed this evaluation on three
publicly available datasets. In one of them, we used our own
annotation. Two of the datasets were acquired using a Kinect
sensor, and one using a motion capture system. Details of the
experiments are presented in the following sub-sections. In
all experiments, we used a linear SVM classifier, using the
LIBSVM software [Chang and Lin, 2011] with the descrip-
tor. Before training or testing, descriptors are normalized to
have unit L2 norms. The covariance matrix is shift invariant
by nature. To make it scale invariant, we normalized joint
coordinates over the sequence to range from 0 to 1 in all di-
mensions before computing the descriptor.

4.1 MSR-Action3D Dataset
The MSR-Action3D dataset [Li et al., 2010] has 20 action
classes performed by 10 subjects. Each subject performed
each action 2 or 3 times. There are 567 sequences in total,
from which we used 5443, each was recorded as a sequence
of depth maps and a sequence of skeletal joint locations. Both
types of sequences were acquired using a Kinect sensor. 20
joints were marked in the skeletal joint sequences as shown
in Figure 3.

3[Li et al., 2010] already excluded 10 sequences out of the 567
in their experiments. We excluded 13 more sequences that we found
severely corrupted.
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Figure 3: Skeleton joint locations and names as captured by
the Kinect sensor.

Method Acc. (%)
Rec. Neural Net. [Martens and Sutskever, 2011] 42.50
Hidden Markov Model [Xia et al., 2012] 78.97
Action Graph [Li et al., 2010] 74.70
Random Occupancy Patterns [Wang et al., 2012a] 86.50
Actionlets Ensemble [Wang et al., 2012b] 88.20
Proposed Cov3DJ 90.53

Table 1: Comparative results on the MSR-Action3D dataset.

We used the typical experimental setup on this dataset [Li
et al., 2010], which divides the action classes into three action
sets, each containing 8 action classes, with some overlap be-
tween action sets. Classifiers are trained to distinguish among
actions in the same set only. The reported accuracy is the av-
erage over the three sets.

Several studies have already been conducted on the MSR-
Action3D dataset. Table 1 shows the classification rate of
our approach compared to the state-of-the-art methods4. Our
results in this table correspond to using three levels of the
descriptor while allowing overlap in the second and third lev-
els. Our approach achieves 90.53% classification rate, ex-
ceeding the second best approach by more than 2%. It is
worth noting that we only rely on joint locations in our ap-
proach, while other algorithms, such as [Li et al., 2010;
Wang et al., 2012a], use the depth maps. Moreover, our
descriptor construction and classification algorithm are con-
siderably simpler than the Ensemble of Actionlets used in
[Wang et al., 2012b]; and, our encoding of temporal informa-
tion is also considerably simpler than HMMs, used in [Xia
et al., 2012]. Therefore, the effectiveness of our approach is
fostered by its simplicity compared to other state of the art
methods, which shows its practical advantage.

Next, we use the same dataset to evaluate the effect of

4The entry for RNN in Table 1 was copied from [Wang et al.,
2012b].

L = 1 L = 2 L = 3 L = 2, OL L = 3, OL
AS1 88.04 86.96 86.96 88.04 88.04
AS2 78.57 81.25 84.82 83.93 89.29
AS3 95.24 94.29 93.33 94.29 94.29

Mean 87.28 87.50 88.37 88.75 90.53

Table 2: Results on MSR-Action3D using different levels in
the temporal hierarchy. Adding levels and allowing overlap
(marked with OL) enhances classification accuracy in gen-
eral. Best results for L = 3 with overlapping.

Metaphoric No. of Iconic No. of
Gestures Insts. Gestures Insts.

Start system 508 Duck 500
Push right 522 Goggles 508
Wind it up 649 Shoot 511

Bow 507 Throw 515
Had enough 508 Change weapon 498
Beat both 516 Kick 502

Table 3: Gesture classes in the MSRC-12 dataset and the
number of annotated instances from each class.

changing the parameters of descriptor construction. The re-
sults in Table 2 show the classification accuracy for different
levels in the temporal hierarchy while enabling or disabling
overlap. In general, we can deduce that adding more levels
enhances the descriptor’s discrimination power, and hence,
the classification accuracy. The overlap also enhances the
classification accuracy. Another observation is that even with
one level, Cov3DJ outperforms all algorithms in Table 1, ex-
cept for the Actionlets Ensemble [Wang et al., 2012b]. With
only two levels and overlap, Cov3DJ outperforms all other
methods in the table.

4.2 MSRC-12 Kinect Gesture Dataset
To test the proposed approach when a large number of train-
ing instances is available, we experimented on the MSRC-
12 dataset [Fothergill et al., 2012]. MSRC-12 is a relatively
large dataset for action/gesture recognition from 3D skeleton
data, recorded using a Kinect sensor. The dataset has 594 se-
quences, containing the performances of 12 gestures by 30
subjects. There are 6, 244 annotated gesture instances in to-
tal. Table 3 shows the 12 gesture classes in the dataset and
the number of annotated instances from each. The gesture
classes are divided into two groups: metaphoric gestures, and
iconic gestures.

Each sequence in the dataset is a recording of one subject
performing one gesture for several times in a row. The ground
truth annotation for each sequence marks the action point of
the gesture, which is defined in [Nowozin and Shotton, 2012]
as ”a single time instance at which the presence of the action
is clear and that can be uniquely determined for all instances
of the action”. For a real-time application, such as a game,
this is the point at which a recognition module is required to
detect the presence of the gesture.

The ground truth annotation of the dataset is designed for
experimenting on the task of action detection, in which it is
required to locate instances of different actions in a given
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video sequence. We wanted to benefit from the large volume
of the dataset without moving away from the task of action
recognition. Therefore, we needed to know the start and end
of each gesture instance, not just the action point.

To perform our action recognition experiments, we manu-
ally annotated the sequences of the dataset to mark the onset
and offset of each gesture instance.5 To make this task easy,
we made use of the action point annotation. We developed a
simple tool to facilitate locating the boundaries of each action
instance starting the search always from the marked action
point.

The lengths of the gesture instances – i.e. the number of
frames between the onset and offset of the gesture – result-
ing from our annotation range from 13 frames to 492 frames.
The lower end of this range correspond to legitimate instances
of the gesture “wind it up”, which is sometimes performed
by the subject multiple times in a row, and the ground truth
marks each as a separate instance. The higher end of the
range, however, typically correspond to an odd performance
of the gesture, e.g. dancing and moving back and forth while
performing the gesture with unnecessary repetitions, or an ex-
tra slow performance of the gesture. Such odd long instances
constitute a very small fraction of the dataset. Only 40 in-
stances in the entire dataset are longer than 200 frames. We
included all instances in our experiments. The median length
of an instance is 80 frames. If we consider the ending of the
gesture instance to be the action point, instead of the offset
point, the median length becomes 40 frames and the maxi-
mum becomes 440 frames. Given the wide range of gesture
lengths, choosing a fixed length sequence ending at an action
point, e.g. 35 frames as in [Fothergill et al., 2012], to rep-
resent an action is not quite convincing. While 35 frames is
shorter than more than half of the instances, it may include
more than two consecutive instances of the short gestures,
such as “wind it up”.

In the following subsections, we first present the experi-
mental results using our own annotation, which are the first
such results on this dataset. Then, we compare to a recently
published experiment on the same dataset in an action recog-
nition setting [Ellis et al., 2013], in which gesture boundaries
where considered to be the mid-points between consecutive
action points. In all these experiments, we vary the number
of levels in the temporal hierarchy, between 1 and 2, and en-
able or disable overlap in the latter. Given the large volume
of the dataset, we could not experiment on three hierarchical
levels of the descriptor due to the limitations of our system’s
configurations. We completely disregard the type of instruc-
tions given to each subject [Fothergill et al., 2012] in all our
experiments.

Leave-One-Out Experiments
In this experiment, we used all action instances from 29 sub-
jects for training and the action instances of the remaining
subject for testing. We performed the experiment 30 times,
excluding one subject in each run. The benefit of such setup
is two fold: First it allows for testing the inter-subject gener-
alization of the approach while using as much data as possible

5This annotation can be downloaded from
http://www.eng.alexu.edu.eg/ mehussein/msrc12 annot4rec/.

L = 1 L = 2 L = 2, OL
Leave One Out 92.7 93.6 93.6
50% Subject Split 90.3 91.2 91.7
1/3 Training 97.7 97.8 97.9
2/3 Training 98.6 98.7 98.7
[Ellis et al., 2013]’s 89.6 90.9 91.2

Table 4: Classification accuracy results for experiments on
the MSRC-12 dataset with different experimental setups and
different descriptor configurations. The numbers shown are
percentages. For explanation of each experimental setup, re-
fer to subsections of Section 4.2.

for training. Second, it allows for detecting problematic sub-
jects and analyzing the sources of some of the classification
errors.

The results of the experiment are shown in the first row of
Table 4. The values in the table are the average classification
rate over the 30 runs. This average value ranges from 92.7%
to 93.6%, slightly increasing with increasing the descriptor’s
length (by adding an extra level to the hierarchy and allowing
overlap). The high classification rate verifies the inter-subject
discrimination power of the descriptor.

Inspection of the individual errors in each of the 30 runs
revealed that the most problematic gesture instances belonged
to subject number 2. By inspecting the gesture classes with
high error rate for this subject, we found that in most cases,
the subject performed the gesture with unrelated movements,
for example, dancing or walking while the gesture should be
performed only by hands.

50% Subject Split
In the next experiment, we test the sensitivity of the classifier
to reducing the number of training samples. We trained 20
different classifiers, each on a random selection of half the
persons for training and the other half for testing. The av-
erage correct classification rate, as shown in the second row
of Table 4, ranges from 90.3% to 91.7%. Despite using only
half the instances for training compared to around 97% in the
leave-one-out experiment, the reduction in the classification
accuracy is less than 3%

From the experiments above, it is clear that the discrim-
ination power of our descriptor is larger on the MSRC-12
dataset. This is despite the larger number of gestures and de-
spite the larger differences among subjects’ performances of
the same gesture. This can be attributed to the larger number
of instances available to train the classifiers.

1 : 2 Instance Split
In the final experiment, we test how much the classifier’s per-
formance can be enhanced if samples from all subjects are
used in training and testing. The instances of each gesture
class are randomly split between training and testing. The
splits are done by random sampling without replacement. In
other words, no instance can be shared between the training
and testing sets. Two different split ratios are used: either
1/3 of the instances are used for training and the rest for test-
ing, or 2/3 are used for training and the rest for testing. 20
different random splits from each ratio are generated in each
ratio.
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The results for this experiment are shown in the third and
forth rows of Table 4. When one third of the data is used for
training, the accuracy is around 98%. When two thirds are
used for training, the accuracy goes up to around 99%.

From this experiment, we can see that a significant portion
of the error we saw in the previous experiments were due to
inter-person variations in performing the gesture. This could
be due to giving different types of instructions to different
users upon collecting the dataset [Fothergill et al., 2012].

Using Mid-Action Points as Gesture Boundaries

In this section, we compare to the results of [Ellis et al.,
2013], in which a 4-fold cross validation experiment was
conducted on the MSRC-12 dataset. Following their same
setup, the midpoint between two consecutive action points
were used to divide a video into gesture instances, while us-
ing the first and last frames of a video as the boundaries for
the first and last gesture instances. The results of this experi-
ment are shown in the last row of Table 4. The classification
rate reported in [Ellis et al., 2013] is 88.7%, which is slightly
inferior to our basic configuration. Our best configuration
achieves 91.2% accuracy in this experiment.

4.3 HDM05-MoCap Dataset

Similar to [Ofli et al., 2012], we experimented with our
approach on a Motion Capture dataset, namely the HDM05
database [Müller et al., 2007]. There are three main dif-
ferences between this dataset and the preceding two datasets:
First, it is captured using motion-capture sensors, which leads
to much less noise than in the data acquired by a Kinect sen-
sor. Second, the number of joints recorded is 31 instead of
20. This leads to a longer descriptor since the size of the
covariance matrix in this case is 93 × 93. Third, the frame
rate is much higher, 120 fps instead of 15 or 30 fps as in the
preceding two datasets.

We used the same setup in [Ofli et al., 2012] with the same
11 actions performed by 5 subjects. We had 249 sequences
in total. We used 3 subjects (140 action instances) for train-
ing, and 2 subjects (109 action instances) for testing. The
set of actions used in this experiment is: deposit floor, elbow
to knee, grab high, hop both legs, jog, kick forward, lie down
floor, rotate both arms backward, sneak,squat, and throw bas-
ketball

The results in Table 5 show that the most basic configura-
tion of our descriptor outperforms the best configuration of
the SMIJ approach [Ofli et al., 2012]. The results also show
that the more levels we add to the temporal hierarchy the bet-
ter classification accuracy we can achieve.

We can observe how the classification accuracy with the
HDM05 dataset is significantly better than the classification
accuracy with the MSR-Action3D dataset (Section 4.1) al-
though the numbers of training samples used in both datasets
are comparable. This can be attributed to the much lower
level of noise in HDM05’s data, and the extra information
available with the higher frame rate and larger number of
joints.

Method Accuracy(%)
SMIJ [Ofli et al., 2012] 84.40
Cov3DJ L = 1 92.66
Cov3DJ L = 2 93.57
Cov3DJ L = 3 95.41

Table 5: Classification accuracy on the HDM05 dataset with
various configurations of Cov3DJ compared to the baseline
method.

5 Conclusion and Future Directions
We introduced a novel descriptor for action sequences con-
sisting of 3D skeletal joint movements. The descriptor,
named Cov3DJ, is based on the covariance matrix of 3D
joint locations over the entire sequence. Cov3DJ has a fixed
length, independent from the sequence’s length. Temporal
information can be effectively encoded in the descriptor by
incorporating multiple Cov3DJs for sub-windows of the se-
quence, that are possibly overlapping, in a temporal hierar-
chy. Cov3DJ is also efficient to compute over multiple over-
lapping windows using integral signals.

We evaluated the discrimination power of the descriptor
on the task of human action recognition from skeleton data.
Despite the simplicity of the descriptor, training an off-the-
shelf linear SVM classifier on it outperforms the state of the
art methods in multiple dataset. We achieved a classification
rate of 90.5% on the MSR-Action3D dataset, and 95.4% on
HDM05 MoCap dataset. In addition, we experimented on the
newly introduced MSRC-12 dataset, with our own annota-
tion, achieving up to 93.6% cross-subject classification rate.

While the descriptor is both scale and translation invari-
ant, it is not rotation or reflection invariant. We believe that
rotation invariance can easily be achieved by transforming
joint locations to the subject’s local coordinate frame, defined
based on the current pose, instead of using the camera frame.
Alternatively, rotation invariant features, such as angles or ve-
locities, can be used instead of joint locations. Reflection in-
variance, on the other hand, is more challenging to achieve.
However, in some applications, actions performed by the left
and right parts of the body are distinct, in which case, reflec-
tion invariance is not desired. Finally, a more flexible tempo-
ral sub-division may help achieve better performance.
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